

GigE-V Framework
for Linux 32/64-Bit
Programmer's Manual

September 12, 2018
www.teledynedalsa.com

sensors | cameras | frame grabbers | processors | software | vision solutions

http://www.teledynedalsa.com/

NOTICE

© 2018 Teledyne DALSA, inc. All rights reserved.

This document may not be reproduced nor transmitted in any form or by any means, either electronic
or mechanical, without the express written permission of Teledyne DALSA. Every effort is made to
ensure the information in this manual is accurate and reliable. Use of the products described herein is
understood to be at the user’s risk. Teledyne DALSA assumes no liability whatsoever for the use of the
products detailed in this document and reserves the right to make changes in specifications at any
time and without notice.

Linux® is a registered trademark of Linus Torvalds.

All other trademarks or intellectual property mentioned herein belongs to their respective owners.

Printed on September 12, 2018

Document Number: OC- COMM-GEVP0
Printed in Canada

About This Manual

This manual exists in Adobe Acrobat® (PDF) formats (printed manuals are available as special
orders). The PDF format make full use of hypertext cross-references. The Teledyne DALSA home page
on the Internet, located at http://www.teledynedalsa.com/imaging, contains documents, software
updates, demos, errata, utilities, and more.

About Teledyne DALSA
Teledyne DALSA is an international high performance semiconductor and electronics company that
designs, develops, manufactures, and markets digital imaging products and solutions, in addition to
providing wafer foundry services.

Teledyne DALSA Digital Imaging offers the widest range of machine vision components in the world.
From industry-leading image sensors through powerful and sophisticated cameras, frame grabbers,
vision processors and software to easy-to-use vision appliances and custom vision modules.

http://www.teledynedalsa.com/imaging

GigE-V Framework for Linux 32/64-bit GigE-V Framework for Linux Overview • 3

Contents
GIGE-V FRAMEWORK FOR LINUX OVERVIEW _________________________ 4

A COMPACT API FOR GIGE VISION CAMERAS UNDER LINUX .. 4
GETTING STARTED .. 6
PREREQUISITES ... 6
INSTALLATION ... 8
PERFORMANCE TUNING .. 10
GIGE NETWORK ADAPTER OVERVIEW ... 12
GIGE VISION DEVICE STATUS TOOL .. 13
LSGEV UTILITY .. 15
CAMERA IP ADDRESS CONFIGURATION TOOL ... 16
GIGE WITH TURBODRIVE ... 18
EXAMPLE PROGRAMS ... 19
FIRMWARE UPDATE .. 27

GIGE-V FRAMEWORK API _______________________________________ 28
ABOUT GIGE VISION .. 28
WHAT’S NEW FOR VERSION 2.10 ... 29
API INITIALIZATION AND CONFIGURATION .. 30
AUTOMATIC CAMERA DISCOVERY ... 33
CONNECTING TO A CAMERA ... 34
CAMERA GENICAM FEATURE ACCESS .. 41
CAMERA GENICAM FEATURE ACCESS – MANUAL SETUP ... 46
GENICAM GENAPI FEATURE ACCESS THROUGH XML .. 50
IMAGE FRAME ACQUISITION .. 53
ASYNCHRONOUS CAMERA EVENT HANDLING .. 65
MANUAL CAMERA DETECTION AND CONFIGURATION (ADVANCED TOPIC) 69
UTILITY FUNCTIONS ... 73
OPERATING SYSTEM INDEPENDENCE WRAPPER ... 76

APPENDIX A: COMMON PACKAGE MANAGEMENT METHODS IN LINUX _____ 77
SOFTWARE PACKAGE MANAGEMENT TOOLS ... 77
CLI PACKAGE MANAGEMENT COMMAND EXAMPLES (BY DISTRIBUTION)............................... 78
REQUIRED PACKAGES .. 79

APPENDIX B: HELPER FUNCTIONS ________________________________ 80

APPENDIX C: FEATURE ACCESS THROUGH STATIC REGISTERS ___________ 84

APPENDIX D: LEGACY FUNCTIONS _______________________________ 101

CONTACT INFORMATION _______________________________________ 111
SALES INFORMATION .. 111
TECHNICAL SUPPORT .. 111

4 • GigE-V Framework for Linux Overview GigE-V Framework for Linux 32/64-bit

GigE-V Framework for Linux
Overview
A Compact API for GigE Vision Cameras under
Linux
This document describes the GigE-V Framework for Linux which is a simplified, user-level API for
accessing the features of GigE Vision devices. Its compact footprint is ideal for embedded platforms.

It is implemented in the C language and has an operating system independent layer that allows it to
run, potentially, on any operating system which supports threads, events, and a socket based network
interface. This implementation is intended Linux and is supported on most popular distributions such
as Ubuntu, Debian, Suse/openSuse, and Red Hat (RHEL/Fedora/CentOS/Scientific).

Long-Term Support Linux Distributions
Teledyne DALSA recommends using long-term support (LTS) Linux distributions for machine vision
applications. Long term support guarantees that critical system updates are available to ensure
system stability.

Suitable long term support distibutions include:

• Ubuntu: Released every 2 years. Starting with Ubuntu 12.04 LTS, versions receive five years
support.

• CentOS: Release distributions provide long term support (end of life) for up to 10 years. For
example, CentOS-7 provides updates until June 30, 2024.

• Red Hat: Red Hat Enterprise Linux versions 6 and 7 each deliver 10 years of support (life
cycle), unless otherwise noted, in Full Support, Maintenance Support 1 and Maintenance
Support 2 Phases followed by an Extended Life Phase. In addition, for Red Hat Enterprise
Linux 6, customers may purchase annual Add-on subscriptions called Extended Life-cycle
Support (ELS) to extend limited subscription services beyond the Maintenance Support 2
Phase.

Supported PC and Embedded Hardware Platforms
The following PC architectures are supported:

• x86 : Intel/AMD 32-bit and 64-bit CPUs

The following embedded architectures are supported:

• ARM AArch64: 64-bit ARMv8
• ARM hard float : 32-bit ARMv7 with hardware floating point
• ARM soft float : 32-bit ARM with software emulated floating point

GigE-V Framework for Linux 32/64-bit GigE-V Framework for Linux Overview • 5

System Requirements
• Linux OS support for Gigabit NIC hardware is required (kernel 2.6.24 and later)
• Support for PF_PACKET with RX_RING capability recommended for best performance (usually

available with the Wireshark application and/or the libpcap package which is widely installed
by default).

• libcap-dev package is required to use Linux “capabilities” when running as “root” is not
desired.

• libx11-dev / libxext-dev packages are required for using the X11 display in the example
programs.

• libglade2-dev package is required for building and using the GigE Vision Device Status tool
(uses gtk).

See Appendix A: Common Package Management methods in Linux for information on installing the
required packages and the various commands available.

Note: It is recommended to enable “jumbo” frames by setting the NIC MTU to its
maximum value (usually 9018). This can be set using “ifconfig” or a distribution-
specific tool or configuration file. Please consult the documentation for the Linux
distribution being used.

Application Notes
Available application notes for the GigE-V Framework are on the Teledyne DALSA website.

http://teledynedalsa.com/en/support/documentation/app-notes/

6 • GigE-V Framework for Linux Overview GigE-V Framework for Linux 32/64-bit

Getting Started
The GigE-V Framework for Linux is distributed as a compressed tar archive, with file type “.tar.gz”.
The naming convention e of this archive is:

GigE-V-Framework_<architecture>_<Version#>.<Build#>.tar.gz

For example, the 4 available files for version 2.02 build 0.0135 are:

• GigE-V-Framework_x86_2.02.0.0135.tar.gz,
• GigE-V-Framework_aarch64_2.02.0.0135.tar.gz,
• GigE-V-Framework_ARMhf_2.02.0.0135.tar.gz, and
• GigE-V-Framework_ARMsf_2.02.0.0135.tar.gz

At this time, only target systems configured for self-hosted development are supported. At installation
time, parts of the API are compiled and linked to the run-time libraries found on the target system.
This reduces the risk of an installation package failing to work with a target system due to mismatched
versions of run-time libraries. As a consequence of this, certain pre-requisites are required for
successful installation.

Prerequisites
To compile and link the API on installation and use the example applications that are distributed with
the framework, installation of the following packages is required:

Package Description
gcc C compiler
g++ C++ compiler
GNU make make utility
libX11-dev Library for using basic X11 display primitives in programs
libxext-dev Library for using extended X11 display primitives in programs
libgtk-3-dev Compile and link GigE Vision Device Status tool
libglade2-0
libglade2-dev

Library for loading and using “.glade” UI definition files

In addition, the following libraries are useful for enhancing the performance of the framework.

Package Description
libpcap0.8 Library for user level packet capture
libcap2 Library / tools for assigning Linux “capabilities” to a program
ethtool Utility to configuring tuning parameters of NIC drivers

(usually installed by default)

For example, in Ubuntu. packages can be installed from the terminal using the following command:

sudo apt-get install <package name>

Note, if you are unable to locate a specific package, regular expression can be used to try to find a
suitable alternative package. For example,

sudo apt-get install libpcap*

Note: The pre-requisite packages may have different names on different Linux
distributions. See Appendix A: Common Package Management methods in Linux for more
information on installing these packages and possible variations on their names.

GigE-V Framework for Linux 32/64-bit GigE-V Framework for Linux Overview • 7

System Date and Time Considerations

Note: Some computer systems do not retain time and date settings after power cycling.
This is particularly true of embedded systems. Installation of the GigE-V Framework for
Linux can be affected by misconfigured time and date settings if the files being installed are
timestamped in the future when compared to the current system time.

In such instances, it may be necessary to install/enable an NTP (Network Time Protocol) capability in
order to keep the time and date settings current.

For example, the following message indicates the timestamp of the file is in the future:

As an example, the ntpdate package can be installed and configured to use an available local or online
NTP server to synchronize the system clock.

To install and configure the ntpdate package (using sample server address), use the following
commands:
sudo apt-get install ntpdate
sudo ntpdate 140.165.161.1

It may be necessary to stop the service before initiating the update; for example:
sudo service ntp stop
sudo ntpdate time.nist.gov
sudo service ntp start

Additionally, the /etc/ntp.conf file can be updated to include the required NTP server. For example, the
following lines can be modified to add the NTP server (using sample server address):

Use Ubuntu's ntp server as a fallback.
pool ntp.ubuntu.com
140.165.161.1

8 • GigE-V Framework for Linux Overview GigE-V Framework for Linux 32/64-bit

Installation
To install the GigE-V Framework for Linux from its compressed tar archive file, start by copying it to a
base directory, usually the HOME directory of the user installing it, and extracting the files.

For example:

cp GigE-V-Framework_x86_2.02.0.0132.tar.gz $HOME
cd $HOME
tar –zxf GigE-V-Framework_x86_2.02.0.0132.tar.gz

Then, change to the directory DALSA and run the installer script.

cd DALSA
./corinstall

The script installs the GenICam SDK (v3_0 or later), if not already installed, and then configures,
compiles, links, and installs the GigE-V Framework for Linux and its API libraries. It prompts for the
administrator password when it needs to copy the various libraries to their preferred locations.

Alternately, the installation can be run using sudo (for example, using “sudo ./corinstall”).

The locations used for files are as follows:
Directory Description
/opt/genicam_v3_0 GenICam SDK v3_0 files
/var/opt/genicam/xml/cache GenICam XML cache
/usr/local/lib Dynamic library files for the GigE-V Framework
/usr/dalsa/GigeV Dynamic link to $HOME/DALSA/GigeV for system wide visibility

Environment Variables
The script also adds environment variables that are needed for the GenICam installation to operate
properly. The environment variables added are :

GENICAM_ROOT_V3_0 = /opt/genicam_v3_0
GENICAM_CACHE_V3_0 = /var/opt/genicam/xml/cache
GENICAM_LOG_CONFIG_V3_0 = /opt/genicam_v3_0/log/config-unix

and
GIGEV_XML_DOWNLOAD = /usr/dalsa/GigeV

The new environment variables are visible to all subsequent login shells. After installation, for them to
be visible, the current shell should be logged out and back in again. For the case of a GUI desktop, the
user should log off and back in.

As a reminder, the installation script outputs the message :

GenICam library installation was performed - you will need to log out and back in to
properly set up the environment variables.
**

Note: The environment variables are set globally via shell scripts inside the folder
/etc/profile.d/ that are sourced at login. This configuration works for the shells bash
and csh in most Linux systems.

Note: When using “sudo” to provide the necessary permissions for the higher performance
interface, remember to use “sudo –E” or “sudo –i” to invoke an interactive (login) shell in
order to pick up the environment variables that point to the GenICam SDK installation.
These are used at runtime to be able to set up and use the GenICam XML based features.

GigE-V Framework for Linux 32/64-bit GigE-V Framework for Linux Overview • 9

Uninstalling
To uninstall the GigE-V Framework API, use the following steps:

cd $HOME/DALSA
./corinstall uninstall

The script prompts for the administrator password when deleting files from their install locations. In
addition, the shell scripts that define the added environment variables are removed so that the
environment variables will not be defined at the next login. Files unzipped from the .tar archive during
installation are not removed.

Alternately, the uninstall procedure can be run using sudo (for example, using “sudo ./corinstall
uninstall”).

The GenICam SDK, installed with the GigE-V Framework, is not uninstalled when this API is
uninstalled since it may be used with other APIs and frameworks and with newer, updated, versions of
this framework. During uninstallation, the following text reminds the user that GenICam is not
uninstalled and describes how to uninstall the GenICam SDK if required:

 Found the GenICam library installation directory at /opt/genicam_v3_0
 It is not necessary to uninstall it if it will be re-used later

 To uninstall the GenICam library use the following command :

 . $HOME/DALSA/GenICam_v3_0_0_linux_pkg/uninstall.sh

(Then you will need to log out and log in to remove the environment variables)

Please note the command line for uninstall has a <space> between the <dot> and the
script name. As in <dot><space>$HOME/DALSA/GenICam_v3_0_0_linux_pkg /uninstall.sh

10 • GigE-V Framework for Linux Overview GigE-V Framework for Linux 32/64-bit

Performance Tuning
The Linux OS provides the GigE-V Framework with access to the standard network stack, suitable for
grabbing single images, and also provides a high performance network packet access mechanism,
suitable for streaming image sequences, that is traditionally used by packet sniffer applications.

To avoid packet loss on the network interface, a number of parameters may be adjusted by the user.
Important parameters to maximize are the MTU (maximum transmission unit) size and the number of
receive buffers available to the NIC driver. This helps reduce the number of packets to process and
therefore minimizes CPU overhead and interrupts.

A network tuning script provided with the API can maximize the MTU (enabling Jumbo frames) and
optimize certain network settings, including the number of receive buffers, using a standard tool
named “ethtool”. The gev_nettweak tuning script is located in the following directory:

$HOME/DALSA/GigeV/bin/

For example, to adjust network interface eth0, use the following terminal command to run the script
(administrator privileges are required):

sudo ./gev_nettweak eth0

GigE-V Framework for Linux 32/64-bit GigE-V Framework for Linux Overview • 11

The “gev_nettweak” script adjusts the following parameters to assist the standard network stack in
buffering more image data:

Parameter Description
MTU Maximizes the MTU (Maximal Tranmission Unit) size on the NIC. This

corresponds to the maximum packet size for image data. The use of
NIC hardware whose drivers support “Jumbo frames” aids in making
this value as large as possible (typically maximum is around 9K
bytes (9216 bytes).

net.ipv4.udp_rmem_min Adjust the receive memory allocation size in the network stack.
net.core.netdev_max_backlog Adjust the network packet backlog queue size.
net.unix.max_dgram_qlen Adjust the network queue length for UDP packets. Computes the

amount of memory for UDP packets - a maximum image size and the
number of cameras expected provide a hint for this setting.

net.core.rmem_default
net.core.rmem_max

Adjust the default (and maximum) memory for receiving network
packets.

rx_value
rx_jumbo

Use "ethtool" utility (if present) to adjust the setting of the network
device drivers to optimize the rx_ring and the rx jumbo packet queue
for maximum throughput and to disable the rx pause operation. This
improves reception of image data packets from the cameras.
(Sending to the camera is not as critical)

Access to the high performance packet access interface, mentioned above, is provided by the
PF_PACKET socket interface and is restricted to processes that have a capability set that allows
CAP_NET_RAW (permits raw access to an interface for capturing directly). Generally, this is
accomplished either by using root / sudo permissions to run the program or to have the
CAP_NET_RAW capability set up with the setcap utility that comes with the libcap library.

The ability to tune threads with specific CPU affinity values and higher priority is restricted to
processes that have the capability set that allow CAP_SYS_NICE. Generally, this is accomplished either
by using root / sudo permissions to run the program or to have the CAP_SYS_NICE capability set up
with the setcap utility that comes with the libcap library. The CAP_SYS_NICE capability also allows the
default scheduler (aka SCHED_OTHER) to be replaces with one of the real-time schedulers
(SCHED_RR or SCHED_FIFO) for better thread handling performance.

Note: Some security environments can assign capabilities to executables with a
configuration file (for example, /etc/permissions.local).

Without the CAP_NET_RAW bit set, the library defaults to standard packet accesses using sockets
reading UDP (User Datagram Protocol) packets from the network stack. While the standard network
socket access works for receiving images from a camera, there can be considerable latency in frame
reception as the data makes its way through the network stack. For minimal latency and higher data
rates, it is recommended that the PF_PACKET interface be used by enabling the CAP_NET_RAW
capability bit.

Note: The setcap utility usage is “setcap cap_net_raw+eip <application>”. Where
<application> is the file name of the executables being used. This includes the application
program and all the loadable libraries it uses, referenced from ldconfig instead of
LD_LIBRARY_PATH.

Note: When using “sudo” to provide the necessary permissions for the higher performance
interface, remember to use “sudo –E” or “sudo –i” to invoke an interactive (login) shell in
order to pick up the environment variables that point to the GenICam SDK installation.
These are used at runtime to be able to set up and use the GenICam XML based features.

12 • GigE-V Framework for Linux Overview GigE-V Framework for Linux 32/64-bit

GigE Network Adapter Overview
GigE Vision compliant cameras connects to a computer’s Gigabit Network Adapter. If the computer is
already connected to a network, the computer requires a second network adapter, either onboard or
an additional PCIe NIC adapter.

IP Configuration Sequence
For Teledyne DALSA GigE Vision cameras IP (Internet Protocol) Configuration sequence to assign an IP
address is executed automatically on camera power-up or when connected to a network. As a GigE
Vision compliant device, the camera attempts to assign an IP address as follows.

For any GigE Vision device, the IP configuration protocol sequence is:
• Persistent IP (if enabled)
• DHCP (if a DHCP server is available)
• Link-Local Address (always enabled as default)

The factory default for Teledyne DALSA GigE Vision cameras is Persistent IP disabled and DHCP
enabled with LLA always enabled as per the GigE Vision specification.

Supported Network Configurations
The camera obtains an IP address using the Link Local Address (LLA) or DHCP, by default. If required,
a persistent IP address can be assigned (refer to the Network Imaging manual).

If a DHCP server is present on the network, the camera issues a DHCP request for an IP address. The
DHCP server then provides the camera an IP address.

The LLA method, if used, automatically assigns the camera with a randomly chosen address on the
169.254.xxx.xxx subnet. After an address is chosen, the link-local process sends an ARP query with
that IP onto the network to see if it is already in use. If there is no response, the IP is assigned to the
device, otherwise another IP is selected, and the ARP is repeated. Note that the LLA mode is unable to
forward packets across routers. To use LLA, the NIC must be configured to an address on the
169.254.xxx.xxx subnet.

For example, in Ubuntu, click the network icon in the menu bar to open the Network Connections
dialog; select the NIC and click Edit to modify its parameters.

GigE-V Framework for Linux 32/64-bit GigE-V Framework for Linux Overview • 13

GigE Vision Device Status Tool
The GigE Vision Device Status tool lists all devices connected to the host system. Each GigE device is
listed by name along with important information such as the assigned IP address and device MAC
address.

The following table provides the feature name and description of the available status fields.
Name Feature Name Description
Manufacturer DeviceVendorName Displays the device vendor name.

Model DeviceModelName Displays the device model name.
Serial number DeviceSerialNumber Displays the device’s factory set 8-digit serial number.
MAC address deviceMacAddress Displays the unique MAC (Media Access Control)

address of the device.
Status DeviceConnectionStatus Displays the current status of the device connection.

Possible values are:
• Available: The device is available.
• Connected: The device is currently connected

to an application and is not available.
Camera IP Address GevCurrentIPAddress Displays the device’s current IP address.
NIC IP Address GevPrimaryApplicationIPAddress Displays the NIC IP address to which the device is

connected.
MaxPktSize GevSCPSPacketSize Displays the current maximum packet size, in bytes,

for the device to send on the stream channel. The
actual packet size sent is set to the maximum
supported by both the NIC and device packet size
settings.
Note, when a device is connected, this feature cannot
be queried and displays a default value that may not

14 • GigE-V Framework for Linux Overview GigE-V Framework for Linux 32/64-bit

correspond to the actual device setting.
F/W Version DeviceVersion Displays the device version. This field will also highlight

if the firmware is a beta or custom design.
User name DeviceUserID Displays the device’s current user-programmable

identifier of up to 15 characters. The default factory
setting is the camera serial number.

The GigE server periodically scans the network automatically to refresh its state. It might take a few
seconds for the GigE Server to refresh its state after a GigE camera has obtained an IP address.

For example, to start the application in Ubuntu, use the File Manager to open the directory and use
the pop-up menu Run command.

Alternatively, the tool can be started directly from any local directory (it is copied to the /usr/local/bin
directory). For example, in Ubuntu:

When the application is started, the application icon is placed in the Launcher bar (in Ubuntu), from
where it can be locked to easily start the application.

GigE-V Framework for Linux 32/64-bit GigE-V Framework for Linux Overview • 15

lsgev Utility
The lsgev utility lists all GigE Vision devices connected to the host system using only the command
line and a terminal. It can be used as an alternative to the GigE Vision Device Status tool for situations
where using a GUI environment is not an option.

lsgev takes various command line options to alter the details reported for connected devices.

Usage: lsgev [options]

[options]
<none> Output the MAC Address, IP Address, Net Name and NIC IP Address
-v Verbose output: adds the Device Manufacturer and serial number string to the output
-vv Very verbose output:adds the Model name and Version information to the output
-vvv Most verbose output: adds the DeviceUserName string to the output
-? Displays help (a list of the options with the format of their output)

lsgev lists : <MAC>@[<CamIP>] on <netname>=[<NICIP>]
lsgev -v lists : <MAC>@[<CamIP>] on <netname>=[<NICIP>] is <Manuf>:<Sn>
lsgev -vv lists : <MAC>@[<CamIP>] on <netname>=[<NICIP>] is <Manuf>:<Model>:<Sn>:<Version>
lsgev -vvv lists : <MAC>@[<CamIP>] on <netname>=[<NICIP>] is <Manuf>:<Model>:<Sn>:<Version> aka <UserName>

The following terminal output shows the different lsgev command line options with multilple NICs and
cameras.

16 • GigE-V Framework for Linux Overview GigE-V Framework for Linux 32/64-bit

Camera IP Address Configuration Tool
The gevipconfig tool is a command line utility that assigns an IP address to a camera based on its MAC
address. IP addresses can be assigned temporarily (ForceIP) or with a persistent IP mode (assigned
address is saved in non-volatile memory and used on power-up).

This allows cameras to be recovered if the network addressing scheme makes them undetectable. The
gevipconfig tool can be used, for example, when the GigE Vision Device Status tool does not display
any devices (with a camera properly powered and connected):

The command parameters are:

Usage: gevipconfig [-p] MAC_Address IP_Address Subnet_Mask
 -p (optional) = sets address/subnet to persistent mode
 MAC_Address = aa:bb:cc:dd:ee:ff (a-f are HEX digits)
 IP_Address = A.B.C.D (A-D are decimal digits)
 Subnet_Mask = A.B.x.y (Mask for class B or C subnet)

The tool can be started directly from the local directory (it is copied to the /usr/local/bin directory).

Example usage:
To temporarily set a camera with MAC address 00:01:0D:11:08:7F to an address visible to a NIC (for
example, in LAA mode IP address 169.254.0.1 with subnet 255.255.0.0):

gevipconfig 00:01:0D:11:08:7F 169.254.8.128 255.255.0.0

Note: The camera will retain its previous settings when reset.

Setting A Persistent IP Address
To set a camera with MAC address 00:01:0D:11:08:7F to a persistent static address of 172.10.1.4
(camera reboots with the specified address):

gevipconfig –p 00:01:0D:11:08:7F 172.10.1.4 255.255.255.0

The ifconfig command can be used to list the available NIC IP configurations.

GigE-V Framework for Linux 32/64-bit GigE-V Framework for Linux Overview • 17

Alternately, the ip command can be used, with the “addr” switch, to show available network links.

18 • GigE-V Framework for Linux Overview GigE-V Framework for Linux 32/64-bit

GigE with TurboDrive
The GigE-V Framework supports devices equipped with TurboDrive™ technology, delivering high speed
data transfers exceeding the GigE limit. TurboDrive uses advanced data modeling to boost data
transfers up to 2 or 3 times faster than standard GigE Vision speeds – with no loss of image quality.
These breakthrough rates are achieved using a proprietary, patent pending process that assembles
data from the sensor to optimize throughput, simultaneously taking full advantage of both the
sensor’s maximum frame rate and the camera’s maximum GigE data transfer speed (up to 115
Mbytes/s). Teledyne DALSA’s TurboDrive increases system dependability and robustness similar to
Camera Link throughput on a GigE network.

The “transferTurboMode” feature sets the enable state of TurboDrive (1 = enable, 0 = disable). If
TurboDrive is not supported this feature returns an error. Refer to the example programs
(genicam_c_demo/genicam_cpp_demo) for source code on to how to utilize TurboDrive in your
application.

Important: Actual Transfers with TurboDrive are image content dependent but in the best
case scenario, transfers over a GigE Network can reach the camera’s internal acquisition
limit of up to 252MB/sec. If transfers are less than the camera maximum acquisition rate,
camera memory will be used as a circular frame buffer. Refer to the TurboDrive Primer on
the Teledyne DALSA web site for more details.

http://www.teledynedalsa.com/imaging/knowledge-center/appnotes/turbodrive/

GigE-V Framework for Linux 32/64-bit GigE-V Framework for Linux Overview • 19

Example Programs
Example programs are located in the following directory:

$HOME/DALSA/GigeV/examples

The example programs are categorized by the basic functionality they demonstrate.

Grab/Display Frame Data Description
genicam_c_demo The genicam_c_demo program demonstrates a grab and display application

using only C language calls to the Framework API.
genicam_cpp_demo The genicam_cpp_demo program demonstrates a grab and display

application along with access to the underlying GenICam GenApi classes.
genicam_chunk_demo The genicam_chunk_demo program demonstrates how to extract metadata

from a frame buffer using the chunk data layout information provided by the
GenICam XML file. Grab and display functionality is also demonstrated.

genie_nano_metadata_demo The genie_nano_metadata program demonstrates how to access metadata in
a frame by directly accessing the memory location in the frame buffer
containing the fixed chunk data layout provided by the Genie Nano family of
cameras. Grab and display functionality is also demonstrated.

gevconsoledemo This demo is provided for compatibility with older DALSA cameras; use newer
demos for reference when creating applications.
The gevconsoledemo program demonstrates a grab and display application
utilizing direct register access to the camera. Only cameras known to the API
can be used with this program since the camera register definitions need to
be hardcoded in a static table.
For more information, please see Appendix C: Feature Access Through Static
Registers.

Archive Frame Data Description
save_data_demo The save_data_demo (in $HOME/DALSA/GigeV/examples/archive_data)

saves frame data to a container file (of type “.gevbuf”). It saves single
frames or sequences of frames to the “.gevbuf” containers with options to
include metadata (chunk data), and to control the type of image data
decoding performed prior to storage.

restore_nano_data_demo The restore_nano_data_demo (in
$HOME/DALSA/GigeV/examples/archive_data) restores frame data from the
variable length “.gevbuf” containers created by the save_data_demo. The
program demonstrates how to recover the frame data, perform any decoding
required to generate usable images, and optionally save the image data to

20 • GigE-V Framework for Linux Overview GigE-V Framework for Linux 32/64-bit

TIFF files. If metadata (chunk data) is present in the container, it is accessed
as the fixed chunk data layout provided by the Genie Nano family of cameras.

GenICam Feature Access Description
dumpfeatures The dumpfeatures program (in

$HOME/DALSA/GigeV/examples/dump_features) demonstrates how to access
the GenICam XML features of a camera and output the entire hierarchy of
features, including their type, to the screen.

savefeatures The savefeatures program (in
$HOME/DALSA/GigeV/examples/dump_features) demonstrates how to save
the streamable features, as {feature_name : value} pairs, to the screen or to
a text file.

loadfeatures The loadfeatures program (in
$HOME/DALSA/GigeV/examples/dump_features) demonstrates how to load
{feature_name : value} pairs, from a text file, to the camera.

c_loadfeatures The c_loadfeatures program (in
$HOME/DALSA/GigeV/examples/dump_features) demonstrates loading
{feature_name : value } pairs from a text file to the camera using only C
callable functions from the Framework API.

genicam_fileaccessdemo The genicam_fileaccessdemo program demonstrates access to the file
interface on the camera. The files present can be detected and read or
written, as allowed by the definitions provided by the GenICam XML file
associated with the camera.

GigE Vision ACTION_CMD Description
nano_trigger_demo The nano_trigger_demo (in

$HOME/DALSA/GigeV/examples/genie_nano_actioncmd_demo)
demonstrated how to set up a camera for use with the action_cmd_demo.
The demo sets camera features to acquire images from a trigger provided by
an action command (Action1) using the default ACTION_CMD functionality
provided by the Genie Nano family of cameras.

action_cmd_demo The action_cmd_demo (in
$HOME/DALSA/GigeV/examples/genie_nano_actioncmd_demo) demonstrates
how to send an action command to cameras on a network. The demo sends
an ACTION_CMD specific to the Genie Nano family of cameras to be identified
as Action1. The accompanying nano_trigger_demo will receive frames
triggered by Action1.

Note: Running demos that display images, such as genicam_c_demo and
genicam_cpp_demo, on an ARM hard float platform using the ARM soft float package (GigE-
V-Framework_ARMsf_xxx) will not execute properly unless the required soft float library
packages are installed.

Each example program directory includes a makefile to compile the example. Examples must be
compiled before using by running the make command in the example directory. For example, in
Ubuntu:

sapera@computername:~/DALSA/GigeV/examples/genicam_c_demo$ make

Note: If the make operation fails on link, verify that the required prerequisites are installed
for the given hardware architecture (for example, ARM hardfloat, ARM softfloat, and Intel
x86).

Call the program name to run program. For example, in Ubuntu, to run the program in the current
directory, precede the program name with “./”:

sapera@computername:~/DALSA/GigeV/examples/genicam_c_demo$./genicam_c_demo

If multiple cameras are connected, most example programs can be invoked using a camera index
(starting from 0):

./genicam_c_demo 1

GigE-V Framework for Linux 32/64-bit GigE-V Framework for Linux Overview • 21

Note: For multiple cameras on the same NIC indices are not static and are populated
dynamically when the program is run, therefore the index for a specific camera may change
depending on the order it is acknowledged when the program is run. Functions are provided
to perform automatic camera (device) discovery and enumeration; see the Automatic
Camera Discovery section. Functions are also available to open cameras by IP address,
name or serial number; see the Connecting to a Camera section for more information.

The “-“ or “?” switch provides usage for most example programs. For example,

ubuntu@tegra-ubuntu:~/DALSA/GigeV/examples/dump_features$./savefeatures ?

GigE Vision Library GenICam Feature Save Example (May 6 2016)
3 camera(s) on the network
Usage: savefeatures : Output features from camera 0 to stdout.
 savefeatures - cam_index : Output features from camera 'cam_index' to
stdout. (Note the hyphen indicating stdout)
 savefeatures filename : Save features from camera 0 to 'filename'.
 savefeatures filename cam_index : Save features from camera 'cam_index' to
'filename'.
ubuntu@tegra-ubuntu:~/DALSA/GigeV/examples/dump_features$

Image Display
The example programs include code for a rudimentary image display capability using function calls to
the low level X11 libraries. These functions provide access to the X server underlying most, if not all,
graphical environments available in Linux. All of the source code showing how to prepare and display
an image buffer is provided.

Note: The display functions are not optimized for speed or efficiency and are intended as a
simple mechanism for rendering an image buffer to the screen for viewing.

Saving Images
Example programs that support image acquisition (excluding the gevconsoledemo) allow saving
images as TIFF files using the “@” command, which saves the last acquired image (image data only;
no metadata is included).

Both the grab demos (genicam_c_demo and genicam_cpp_demo), as well as the archive data
examples (save_data_demo and restore_nano_data_demo) and genie_nano_metadata_demo, support
saving images as TIFF files.

Bayer Conversion
By default, example programs that support saving frames enable conversion of Bayer to RGB format.

If ENABLE_BAYER_CONVERSION is 1 (default), Bayer formats display as color and are stored to TIFF
as color.

If ENABLE_BAYER_CONVERSION is 0 (edit and recompile), Bayer formats display as mono and are
stored to TIFF as mono.

22 • GigE-V Framework for Linux Overview GigE-V Framework for Linux 32/64-bit

Grab Demos
The grab demo examples (genicam_c_demo and genicam_cpp_demo) demonstrate how to acquire
and display images using a continuous (grab) or single frame (snap) acquisition. TurboDrive The
examples display the current image and pixel format settings for the selected camera. Bayer/YUV
images are displayed as monochrome since no conversion is performed; RGB images are displayed in
color.

For a list of supported pixel formats refer to the Supported Pixel Formats section.

When more than 1 camera is available on the network, call the executable followed by the camera
index (0 to (number of cameras -1), default = 0). For example,

./genicam_c_demo 1

The image is displayed in a separate window . To improve display performance, the user can optimize
the display as needed for the required platform.

Note: Depending on the image size, the display window can overlap the terminal window;
switch focus to the terminal window as required.

GigE-V Framework for Linux 32/64-bit GigE-V Framework for Linux Overview • 23

File Access Example
The file access example provides commands to list (L) the available files and their associated file
access privileges, read (R) files to save in the current directory, and write (W) files from the current
directory to the camera. Indices identify the available files.

Note: Refer to the camera documentation for the available files, formats and usage.

Feature Access Examples
Feature access examples include the dumpfeatures, savefeatures and loadfeatures/c_loadfeatures that
demonstrate how to list the available features on a camera, output the current camera settings and
load camera settings to the camera, respectively.

The dumpfeatures example parses the xml file to extract all available features on the camera by
category and their corresponding type, displaying them in the terminal window:
Dumping feature tree :

Category : Root
Category : deviceInformation

DeviceVendorName : <IString>
DeviceFamilyName : <IString>
DeviceModelName : <IString>
DeviceVersion : <IString>
deviceManufacturerPartNumber : <IString>
DeviceManufacturerInfo : <IString>
DeviceFirmwareVersion : <IString>
DeviceID : <IString>
DeviceSerialNumber : <IString>
deviceMacAddress : <IInteger>

…
Category : deviceSensorControl

DeviceScanType : <IEnumeration>
sensorColorType : <IEnumeration>
pixelSizeInput : <IEnumeration>
SensorWidth : <IInteger>

24 • GigE-V Framework for Linux Overview GigE-V Framework for Linux 32/64-bit

 SensorHeight : <IInteger>
 acquisitionFrameRateControlMode : <IEnumeration>
 AcquisitionFrameRateEnable : <IBoolean>
 AcquisitionFrameRate : <IFloat>
…
 Category : DigitalIOControl
 TriggerSelector : <IEnumeration>
 TriggerMode : <IEnumeration>
 triggerFrameCount : <IInteger>
…
The savefeatures and loadfeatures/c_loadfeatures examples export/import feature settings that are
streamable (that is, can be uploaded/downloaded in a batch process) using a simple text file in the
following format:
<feature> <value>
<feature> <value>

For example, to save current camera feature settings to a text file (in the current directory), use the
following command:

./savefeatures <filename>.txt

With multiple cameras, usage is as follows:
savefeatures : Output features from camera 0 to stdout.
savefeatures - cam_index : Output features from camera 'cam_index' to
stdout. (Note the hyphen indicating stdout)
savefeatures filename : Save features from camera 0 to 'filename'.
savefeatures filename cam_index : Save features from camera 'cam_index' to
'filename'.

When loading features, the file need only contain the feature-value pair for those features that need to
be modified. For example:

PixelFormat Mono8
OffsetX 0
OffsetY 0
Width 640
Height 480

If multiple cameras are connected, the camera index (0 to (number of cameras -1), default = 0) is
used to select the required camera.

Note: Not all camera features are streamable; for non-streamable features you must use
the GevGetFeatureValue and GevSetFeatureValue functions.

GigE-V Framework for Linux 32/64-bit GigE-V Framework for Linux Overview • 25

Archive Data Examples
The archive data examples include the save_data_demo and restore_nano_data_demo programs.
These programs use a “.gevbuf” file format to store frames or frame sequences (with or without the
metadata appended to each frame). The “.gevbuf” file is a variable length container for frame
payloads / sequences of frame payloads, intended for archiving frames in raw, unprocessed form.

All functions for manipulating gevbuf files are included in the demo source code.

save_data_demo
The save_data_demo is intended for archiving frames. It provides a “passthrough” option that disables
all processing in the acquisition mechanism; that is, packed data remains packed and TurboDrive
encoded frames remained compressed. The program can also enable/disable TurboDrive compression
and metadata.

When acquiring frames, the frame number is displayed in the console window.

The “@” command saves the next frame acquired to file, therefore this command should be followed
by a snap [1-9] or continuous grab command [G] (when the grab is stopped using the [S] command,
the first frame of the grab is saved).

The program saves frames and sequences using the custom “.gevbuf” format in the archive_data
example directory; the filename is displayed in the console:

.

To save a sequence of frames, use the “C” command to start and stop the sequence capture. When a
capture is started, frames will continue to be added (while starting/stopping acquisition) to the
sequence until the capture is stopped.

26 • GigE-V Framework for Linux Overview GigE-V Framework for Linux 32/64-bit

restore_nano_data_demo
The restore_nano_data_demo reads “.gevbuf” files and restores individual images or sequences.
Information for each frame in a sequence is displayed. The program unpacks packed images and
decodes TurboDrive encoded frames. Bayer decoding can also be enabled (to convert to color).

The program lists the available files present in the directory where it is executed.

Image saving can be enabled to store image / sequences as TIFF files (mono/RGB based on Bayer
decoding setting when they are read). Each frame in a sequence is saved as a separate TIFF file. To
read a file, use the “R” command, followed by the file index (to exit this command, use -1).

The example reads metadata written using the Genie Nano layout; if the frame contains metadata, it
is displayed in the console (if no metadata is present, 0x00000000 is returned).

GigE-V Framework for Linux 32/64-bit GigE-V Framework for Linux Overview • 27

Action Command Example
The action_cmd_demo demonstrates how to send an action command to an available Genie Nano
camera on a network. The demo uses action command 1 with the default device key, group key and
group mask.

Camera features must be set to accept an action command as a trigger input. To do so, the
nano_trigger_demo program can be used to configure a Genie Nano to trigger to acquire an image on
receipt of action command 1. The camera must be in an active acquisition state (active snap or grab)
to accept the action command trigger. Note that a separate terminal is required to run both programs
(action_cmd_demo and nano_trigger_demo) concurrently

Alternately, the camera can be manually configured to accept an action command, using the GenICam
trigger features supported by the device; refer to the device documentation for more information.

Firmware Update
The standard GenICam File Access features are used to update the camera firmware, if the camera
supports firmware file write access. The GenICam Standard Features Naming Convention (SFNC)
documentation is available at http://www.emva.org/standards-technology/genicam/.

The File Access Example demonstrates how to implement file access using the GigE-V Framework API
feature access functions.

Note: After successfully writing (uploading) a new firmware file to the camera, the camera
typically must be reset (using the GenICam DeviceReset command or power cycling the
camera) to activate the new firmware; refer to the camera documentation for more
information.

http://www.emva.org/standards-technology/genicam/

28 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GigE-V Framework API
About GigE Vision
The GigE Vision standard describes a set of protocols that define access methods and capabilities for
devices and applications alike. The main protocols applicable for GigE Vision cameras are GVCP (GigE
Vision Control Protocol) and GVSP (GigE Vision Streaming Protocol).

The GigE-V Framework API supports the standard register and memory area access parts of GVCP as
well as its asynchronous message channel. The API also supports image data acquisition from a device
using GVSP.

The specific definitions of what is supported by a device are contained in the GigE Vision compliant
XML file provided with the device. Starting with v2.0, the GigE-V Framework API library is able to read
the XML file from the device, and associate a GenICam feature node tree with the device. For more
information on how to use the XML based features see the code examples provided in this document
and the example programs supplied with the API

The GigE-V Framework API builds on the GenICam GenApi, which is included in the GigE-V Framework
API installation. For more information and documentation of the GenICam GenApi visit the EMVA
(European Machine Vision Association) website: www.emva.org/standards-technology/genicam/.

http://www.emva.org/standards-technology/genicam/

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 29

What’s New for Version 2.10
The GigE-V Framework API Version 2.10 adds support for the inclusion of metadata, or “chunk” data
in the terminology of the GigE Vision and GenICam standards.

Data transfers from acquisition device include both the image data and corresponding metadata,
which taken together form a “payload”. The “payload” concept allows for other types of data transfers
from a device as these types become available through updates to this API for support of newer
revisions of the GigE Vision standard.

To provide support "payloads", future standard updates, and to enhance ease of use, the following API
changes have been adopted for Version 2.10:

• New names for functions were chosen to reinforce the concept of "frame" handling versus
"image" handling. The functions can be used with the previous names also.

Previous Function Name (still supported) New Function Name

GevFreeImageTransfer GevFreeTransfer

GevStartImageTransfer GevStartTransfer

GevStopImageTransfer GevStopTransfer

GevAbortImageTransfer GevAbortTransfer

GevWaitForNextImage GevWaitForNextFrame

GetGetNextImage GetGetNextFrame

GevReleaseImage GevReleaseFrame

GevReleaseImageBuffer GevReleaseFrameBuffer

GevQueryImagetransferStatus GevQueryTransferStatus

• A new function, GevIntializeTransfer, to communicate the size of the allocated buffer to the
API so the full payload can be safely stored, especially chunk data that is beyond the end of
the image data.

• GenICam XML feature setup is now done automatically when the camera (or device) is
opened. Manual XML handling can be restored by setting the "manual_xml_handling" entry in
the GEVLIB_CONFIG_OPTIONS structure to TRUE (1) before opening a camera.

• Demos have been changed to use the mandatory "PayloadSize" feature to allocate buffers for
payload frames. Usually the "PayloadSize" is the proper size for allocating buffers, however, in
the case of data with packed pixels that get unpacked during transfer
(Mono10Packed/Mono12Packed), the "PayloadSize" is smaller than the unpacked pixel image
size. The example programs demonstrate how to handle this.

• New "passthru" mode to disable the automatic unpacking of packed pixel formats. The
example programs provided in the archive_demo folder show how to use the “passthru” mode,
demonstrating how to handle undisplayable packed formats

• The "id" field in the GEV_BUFFER_OBJECT structure, returned with the arrival of a frame, is
now 64-bits for future support of a newer GigE Vision standard.

30 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

API Initialization and Configuration
This section describes the API functions to initialize the API and adjust the configuration parameters
available to modify the API’s behavior.

Member Function Overview
Function Description

GevApiInitialize Initializes the API.
GevApiUninitialize Closes (un-initialize) the API.
GevApiGetLibraryConfigOptions,
GevApiSetLibraryConfigOptions

Gets GigE-V Framework API library user configurable
parameters.
Sets GigE-V Framework API library user configurable
parameters.

Member Function Descriptions
The following functions are members of the API Initialization and Configuration group.

GevApiGetLibraryConfigOptions, GevApiSetLibraryConfigOptions
GEV_STATUS GevGetLibraryConfigOptions(GEVLIB_CONFIG_OPTIONS *options);
GEV_STATUS GevSetLibraryConfigOptions(GEVLIB_CONFIG_OPTIONS *options);

Description

Obtains or updates the user configurable parameters that apply to the GigE-V Framework API library.
The configurable options are contained in a data structure of type GEVLIB_CONFIG_OPTIONS and
apply globally to the operation of the GigE-V Framework API library within the current application.

Parameters

options Pointer to a GEVLIB_CONFIG_OPTIONS structure:

typedef struct
{
 UINT32 version;
 UINT32 logLevel;
 UINT32 numRetries;
 UINT32 command_timeout_ms;
 UINT32 discovery_timeout_ms;
 UINT32 enumeration_port;
 UINT32 gvcp_port_range_start;
 UINT32 gvcp_port_range_end;
 UINT32 manual_xml_handling;
} GEVLIB_CONFIG_OPTIONS, *PGEVLIB_CONFIG_OPTIONS;

 Structure Description
 version The version of the API (it is read-only)
 logLevel The current message severity logging level for informational

messages. The logLevel can be set to select which messages are
actually output. Possible values are:

 GEV_LOG_LEVEL_OFF No logging is performed
GEV_LOG_LEVEL_NORMAL Fatal and error messages are

enabled

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 31

GEV_LOG_LEVEL_ERRORS Same as “NORMAL”
GEV_LOG_LEVEL_WARNINGS Warning messages are also

enabled
GEV_LOG_LEVEL_DEBUG Debug messages are also enabled
GEV_LOG_LEVEL_TRACE Trace messages are also enabled

The default value is GEV_LOG_LEVEL_NORMAL.

Messages are logged using GevPrint to print messages.
Messages can have the following levels of severity :

 GEV_LOG_FATAL For fatal errors.
GEV_LOG_ERROR For general errors.
GEV_LOG_WARNING For warnings
GEV_LOG_INFO For informational purposes

Important: The more types of messages that are enabled, the
more of a load is placed on the library to perform the logging.
This can lead to degradation of performance in high data rate
applications.

 numRetries Number of times a command is retried before giving up on the
command and generating an error. This is to allow some
tolerance for collisions and added traffic on the network interface
connecting the PC to the camera. (The default value is 3)

 command_timeout_ms Milliseconds the library will wait for a response to a command
before attempting to retry the command or, if the number of
retries have been exhausted, failing the command.
(The default value is 2000 msecs)

 discovery_timeout_ms Milliseconds the library will wait for a response when querying the
network for the presence of cameras. The number of retries
setting also applies to the process of querying the presence of
cameras. (The default value is 1000 msecs)

 enumeration_port IP (Internet Protocol) port on which the device
enumeration/discovery will take place. This allows for the tuning
of network port usage in a system. (The default value is 39999)

 gvcp_port_range_start
gvcp_port_range_end

Start and end IP (Internet Protocol) port numbers for the range
of ports used by the library for communicating with cameras. Port
assignments are taken as needed, from this range and returned
when they are no longer required. This allows for the tuning of
network port usage in a system.
(The default range is 40000 to 49999)

 manual_xml_handling Flag to turn off automatic setup of XML features when a camera
is opened. XML feature access must be performed manually if this
is 1 (true).

Return Value

GEVLIB_OK

32 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevApiInitialize
GEV_STATUS GevApiInitialize(void);

Description

Initializes the API.

Return Value

GEVLIB_OK
GEVLIB_ERROR_INSUFFICIENT_MEMORY

GevApiUninitialize
GEV_STATUS GevApiUninitialize(void);

Description

Closes (un-initialize) the API.

Return Value

GEVLIB_OK

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 33

Automatic Camera Discovery
Functions are provided to perform automatic camera (device) discovery and enumeration.

Member Function Overview
Function Description

GevDeviceCount Function used to query the number of cameras detected in the system.
GevGetCameraList Function returns a list of cameras detected as present in the system.

Member Function Descriptions
The following functions are members of the Automatic Camera Discovery group.

GevDeviceCount
int GevDeviceCount(void);

Description

Queries the number of cameras detected in the system.
Note: A number of factors determine whether connected cameras are seen in the system. Most
notably, the camera and network interface card (NIC) must be on the same IPV4 subnet.

Return Value

The return value is the number of cameras visible in the system.

GevGetCameraList
GEV_STATUS GevGetCameraList (GEV_CAMERA_INFO *cameras, int maxCameras,

 int *numCameras);

Description

Returns a list of cameras detected as present in the system.

Parameters

cameras Pointer to an array of GEV_CAMERA_INFO structures, allocated by the caller, to
contain information for the cameras detected in the system.

maxCameras Maximum number of entries in the array of GEV_CAMERA_INFO structures passed in
the ‘cameras’ parameter.

numCameras Pointer to contain the number of cameras actually detected in the system.
(Note: The number of cameras found can be larger than the number of entries in the
‘cameras’ array. In this case, only ‘maxCameras’ entries are returned in the array. The
total number of cameras in the system is returned in ‘numCameras’.)

Return Value

GEVLIB_OK.

34 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

Connecting to a Camera
After cameras are detected by the system, they can be connected to and accessed via a ‘handle’ (of
type GEV_CAMERA_HANDLE). GigE Vision makes a distinction between classes of connection. Primary
control connections and secondary control connections are supported.

A connection using the primary control channel to a camera is able to control all aspects of the camera
function including its streaming interface and its asynchronous message channel. If this connection is
exclusive, no other connections can be made to the camera. If the primary control channel is not
being used in an exclusive mode, a secondary control channel can be opened and the camera queried
for monitor access. Applications using the secondary control channel can only read from the camera
and are used only for monitoring.

The following functions provide a means to create the camera handle for device access. These
functions are compatible for use in both C and C++ language application programs.

Note: In all cases, the camera device and the NIC card must share the same IP subnet
mask.

Member Function Overview
Function Description

GevOpenCamera Creates a camera handle for accessing a camera.
GevOpenCameraByAddress Creates a camera handle for accessing a camera identified by

a its IP address.
GevOpenCameraByName Creates a camera handle for accessing a camera identified by

a its user name.
GevOpenCameraBySN Creates a camera handle for accessing a camera identified by

a its serial number.
GevGetCameraInterfaceOptions,
GevSetCameraInterfaceOptions

Obtains the user configurable parameters.
Updates the user configurable parameters.

GevGetCameraInfo Obtains a pointer to the GEV_CAMERA_INFO structure.
GevCloseCamera Closes a previously opened camera handle and terminates

access.

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 35

Member Function Descriptions
The following functions are members of the Camera Access group.

GevCloseCamera
GEV_STATUS GevCloseCamera(GEV_CAMERA_HANDLE *handle);

Description

Closes a previously opened camera handle and terminates access to the camera from the application.

Parameters

handle Pointer to a GEV_CAMERA_HANDLE type to receive the allocated handle, used to
access the camera.

Return Value

GEV_STATUS Possible values are:
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_OK

GevGetCameraInfo
GEV_CAMERA_INFO *GevGetCameraInfo(GEV_CAMERA_HANDLE handle);

Description

Obtains a pointer to the GEV_CAMERA_INFO structure stored internally in the camera handle.

Parameters

handle Pointer to a GEV_CAMERA_HANDLE type to receive the allocated handle, used to access
the camera.

Return Value

Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE

36 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevGetCameraInterfaceOptions, GevSetCameraInterfaceOptions
GEV_STATUS GevGetCameraInterfaceOptions (GEV_CAMERA_HANDLE handle,

 GEV_CAMERA_OPTIONS *options);

GEV_STATUS GevSetCameraInterfaceOptions (GEV_CAMERA_HANDLE handle,
 GEV_CAMERA_OPTIONS *options);

Description

These functions are used to obtain and update the user configurable parameters that apply to the
camera connection through the camera handle. The configurable options are contained in a data
structure of type GEV_CAMERA_OPTIONS and apply only to the camera accessed through the specific
camera handle.

Parameters

handle Pointer to a GEV_CAMERA_HANDLE type to receive the allocated handle, used to access
the camera.

options Pointer to a data structure of type GEV_CAMERA_OPTIONS, allocated by the caller, that
contains the parameters associated with the underlying camera handle. This type is
defined as

 typedef struct
{
 UINT32 numRetries;
 UINT32 command_timeout_ms;
 UINT32 heartbeat_timeout_ms;
 UINT32 streamPktSize;
 UINT32 streamPktDelay
 UINT32 streamNumFramesBuffered;
 UINT32 streamMemoryLimitMax;
 UINT32 streamMaxPacketResends;
 UINT32 streamFrame_timeout_ms;
 INT32 streamThreadAffinity;
 INT32 serverThreadAffinity;
 UINT32 msgChannel_timeout_ms;
 UINT32 enable_passthru_mode;
} GEV_CAMERA_OPTIONS, *PGEV_CAMERA_OPTIONS;

 Structure Description
 numRetries Number of times a command is retried before giving up on

the command and generating an error. This is to allow some
tolerance for collisions and added traffic on the network
interface connecting the PC to the camera. (The default
value is 3)

 command_timeout_ms Milliseconds the library waits for a response to a command
before attempting to retry the command or, if the number of
retries have been exhausted, failing the command. (The
default value is 2000 msecs)

 heartbeat_timeout_ms Milliseconds the library and camera waits for contact
between the application and the camera before the camera
decides that the application is unresponsive and releases the
connection. (The default value is 10000 msecs)

 streamPktSize Size, in bytes, of the data packets used for streaming data
from the camera. This value is determined algorithmically
when the camera is opened and can be overridden by setting
a new value using this parameter. The new value must be
less than the NIC MTU (maximum transmission unit) size.

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 37

 streamPktDelay Time delay, in microsecond, between packets sent from the
camera. It can be used to adjust the performance of the
packet streaming on busy network segments. (The default is
0).

 streamNumFramesBuffered Sets the number of frames that can be buffered concurrently
in an internal list. These frames remain in the list until their
acquisition is completed either successfully, or with some
error condition caused by problems encountered during the
acquisition. With a good connection to the camera, the
number of frames actually being buffered at any given time
is one. The default is 4. The minimum is 2.

 streamMemoryLimitMax Maximum amount of memory to use (puts an upper limit on
the number of frames to buffer).

 streamMaxPacketResends Maximum number of packet resends to allow for a frame
(defaults to 100).

 The time, in milliseonds, that a frame is active in the internal
buffering list before it is completed with a timeout error. The
time is measured from the reception of the first packet for
the frame from the camera. The default is 1000 ms.

 streamFrame_timeout_ms Milliseconds, following the reception of the start of a frame,
that the API waits for a frame to be completed. If this time is
exceeded, the frame is delivered to the application with the
status member of the GEVBUF_HEADER structure set to
GEV_FRAME_STATUS_TIMEOUT.

 streamThreadAffinity CPU index (0 to 1023) used to specify a particular CPU on
which to create the streaming packet receive thread when
running a multi-CPU system. A value of “-1” allows the
thread to be created on whatever default CPU the OS
chooses. A value that is larger than the number of CPUs in a
system is treated as if it is “-1”. (The default is -1)

 serverThreadAffinity CPU index (0 to 1023) used to specify a particular CPU on
which to create the high performance packet server thread
when running a multi-CPU system. The packet server thread
reads packets from the PF_PACKET socket interface which
intercepts network data before it is written into the systems
network stack. A value of “-1” allows the thread to be
created on whatever default CPU the OS chooses based on
its (fairly reasonable) load balancing algorithm. A value that
is larger than the number of CPUs in a system is treated as if
it is “-1”. (The default is -1)

msgChannel_timeout_ms Milliseconds that the asynchronous messaging thread waits
during its periodic checks for asynchronous messages from
the camera. (The default is 1 second)

 enable_passthru_mode Zero (default) to enable automatic unpacking of packed pixel
formats and decoding of TurboDrive formats.
Non-zero for passthru mode.

Return Value

GEV_STATUS

Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEV_STATUS_NULL_PTR

38 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevOpenCamera
GEV_STATUS GevOpenCamera (GEV_CAMERA_INFO *device, GevAccessMode mode,

 GEV_CAMERA_HANDLE *handle);

Description

Creates a camera handle for accessing a camera identified by an input camera information structure
(type GEV_CAMERA_INFO).

Parameters

device Pointer to a GEV_CAMERA_INFO structure,
allocated by the caller, passed in to identify the camera device to open.

mode Required access mode. The available values are:
GevExclusiveMode : Exclusive R/W access to the camera.
GevMonitorMode : Shared Read-only access to the camera.
GevControlMode : Shared R/W access to the camera.
The most commonly used mode, for user imaging applications, is GevExclusiveMode.

handle Pointer to a GEV_CAMERA_HANDLE type
Receives the allocated handle to be used to access the camera.

Return Value

GEV_STATUS Possible values are:
GEVLIB_ERROR_API_NOT_INITIALIZED
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_INSUFFICIENT_MEMORY
GEVLIB_ERROR_NO_CAMERA
GEV_STATUS_ACCESS_DENIED

GevOpenCameraByAddress
GEV_STATUS GevOpenCameraByAddress (unsigned long ip_address,GevAccessMode mode,

 GEV_CAMERA_HANDLE *handle);

Description

Creates a camera handle for accessing a camera identified by a camera’s IP address.

Parameters

ip_address 32-bit IP address for a camera, as a number.
For example, 192.168.1.10 is 0xC0A8010A.

mode Required access mode. The available values are:
GevExclusiveMode : Exclusive R/W access to the camera.
GevMonitorMode : Shared Read-only access to the camera.
GevControlMode : Shared R/W access to the camera.

The most commonly used mode for user imaging applications is GevExclusiveMode.
handle Pointer to a GEV_CAMERA_HANDLE type

to receive the allocated handle to be used to access the camera.

Return Value

GEV_STATUS Possible values are:
GEVLIB_ERROR_API_NOT_INITIALIZED
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_INSUFFICIENT_MEMORY
GEVLIB_ERROR_NO_CAMERA
GEV_STATUS_ACCESS_DENIED

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 39

GevOpenCameraByName
GEV_STATUS GevOpenCameraByName (char *name, GevAccessMode mode,

 GEV_CAMERA_HANDLE *handle);

Description

Creates a camera handle for accessing a camera identified by a camera’s user defined name. The user
defined name is a string that can be programmed into the camera for use in identifying multiple
cameras.

Parameters

name A character string (16 characters max) that will be used to match the user defined name
string contained in a camera connected on the system.

mode The required access mode. The available values are:
GevExclusiveMode : Exclusive R/W access to the camera.
GevMonitorMode : Shared Read-only access to the camera.
GevControlMode : Shared R/W access to the camera.

The most commonly used mode for user imaging applications is GevExclusiveMode.
handle Pointer to a GEV_CAMERA_HANDLE type

to receive the allocated handle to be used to access the camera.

Return Value

GEV_STATUS Possible values are:
GEVLIB_ERROR_API_NOT_INITIALIZED
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_INSUFFICIENT_MEMORY
GEVLIB_ERROR_NO_CAMERA
GEV_STATUS_ACCESS_DENIED

40 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevOpenCameraBySN
GEV_STATUS GevOpenCameraBySN (char *sn, GevAccessMode mode,

 GEV_CAMERA_HANDLE *handle);

Description

Creates a camera handle for accessing a camera identified by a camera’s serial number. The serial
number is represented as a string that is programmed into the camera, by the manufacturer, to
identify a particular camera unit.

Parameters

sn A character string (16 characters max) that matches the serial number string
contained in a camera connected on the system.

mode The required access mode. The available values are:
GevExclusiveMode : Exclusive R/W access to the camera.
GevMonitorMode : Shared Read-only access to the camera.
GevControlMode : Shared R/W access to the camera.

The most commonly used mode, for user imaging applications, is GevExclusiveMode.
handle Pointer to a GEV_CAMERA_HANDLE type to receive the allocated handle used to

access the camera.

Return Value

GEV_STATUS Possible values are:
GEVLIB_ERROR_API_NOT_INITIALIZED
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_INSUFFICIENT_MEMORY
GEVLIB_ERROR_NO_CAMERA
GEV_STATUS_ACCESS_DENIED

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 41

Camera GenICam Feature Access
This section describes the functions provided for accessing camera features defined by the GenICam
compatible definitions obtained from the vendor supplied XML data corresponding to the camera.
These functions are compatible for use in both C and C++ language application programs.

Member Function Overview
Function Description

GevGetFeatureValue Retrieves the value of a GenICam feature, as well as its type, by
name.

GevSetFeatureValue Sets the value of a GenICam feature, by name.
GevGetFeatureValueAsString Retrieves a string representation of the value of a GenICam

feature, as well as its type, by name.
GevSetFeatureValueAsString Sets the value of a GenICam feature, by name, via a string

representation of the value.
GevGetFeatureNodeMap Retrieves a pointer to a feature node map from a handle.

Member Function Descriptions
The following functions are members of the Camera GenICam Feature Access group.

GevGetFeatureNodeMap
void * GevGetFeatureNodeMap(GEV_CAMERA_HANDLE handle);

Description

Returns, as a void pointer, a pointer to a GenApi::CNodeMapRef object that was previously
associated with the camera handle by a call to GevConnectFeatures. This allows the pointer to be
retrieved from the API for use in cases where only the camera handle is available.
The feature node map pointer is required if the application program wants to directly access the
underlying GenApi:: interface provided by the GenICam standards group in order to access additional
functionality not provided by the GigE-V Framework for Linux.

Parameters

handle Handle to the camera.
Return Value

A non-NULL pointer on success. A NULL pointer on error or incomplete initialization.

Note: The feature node map is automatically set up when a device is opened. If the pointer returned
is NULL, then there was either an error opening the device or the GEVLIB_CONFIG_OPTIONS for the
library was modified to enable manual XML handling and the XML to device connection needs to be
established manually.

GEVLIB_OK on success.

42 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevGetFeatureValue
GEV_STATUS GevFeatureValue (GEV_CAMERA_HANDLE handle, const char *feature_name,

 int *feature_type, int value_size, void *value);

Description

Retrieves the value of a feature as well as its type.
This function is intended to be used from C code, where the GenApi object class accesses are not
supported.

Note : The corresponding GenApi::CNodeMapRef object must already be associated with the camera
handle via call to GevConnectFeatures.
Parameters

handle Handle to the camera.
feature_name String containing the name of the feature to be accessed.
feature_type Pointer to storage to the feature type being returned. This is the integer version

of the GenApi::EInterfacetype associated with the feature node accessed by
name. The valid values are :

GENAPI_UNUSED_TYPE = 1 for intfIBase/intfIValue/intfICategory that
 are not accessible from C code.
GENAPI_INTEGER_TYPE = 2 for GenApi::EInterfaceType intfIInteger
GENAPI_BOOLEAN_TYPE = 3 for GenApi::EInterfaceType intfIBoolean
GENAPI_COMMAND_TYPE = 4 for GenApi::EInterfaceType intfICommand
GENAPI_FLOAT_TYPE = 5 for GenApi::EInterfaceType intfIFloat
GENAPI_STRING_TYPE = 6 for GenApi::EInterfaceType intfIString
GENAPI_REGISTER_TYPE = 7 for GenApi::EInterfaceType intfRegister
GENAPI_ENUM_TYPE = 9 for GenApi::EInterfaceType intfIEnum
GENAPI_ENUMENTRY_TYPE = 10 for GenApi::EInterfaceType intfIEnumEntry

value_size Size, in bytes, of the storage pointed to by “value” that receives the data
contained at the feature node being accessed.

value Pointer to storage at which to return the data read from the feature node.
Return Value

GEVLIB_OK on success.

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 43

GevGetFeatureValueAsString
GEV_STATUS GevGetFeatureValueAsString (GEV_CAMERA_HANDLE handle, const char

 *feature_name, int *feature_type, int
 value_string_size, char *value_string);

Description

Reads the value of a feature and returns it as a string representation.
This function is useful in C and C++ code, especially for representing feature names and values in a
GUI program.

Note : The corresponding GenApi::CNodeMapRef object must already be associated with the camera
handle via call to GevConnectFeatures.
Parameters

handle Handle to the camera.
feature_name String containing the name of the feature to be accessed.
feature_type Pointer to storage to the feature type being returned. This is the integer

version of the GenApi::EInterfacetype associated with the feature node
accessed by name. The valid values are :

GENAPI_UNUSED_TYPE = 1 for intfIBase/intfIValue/intfICategory that
 are not accessible from C code.
GENAPI_INTEGER_TYPE = 2 for GenApi::EInterfaceType intfIInteger
GENAPI_BOOLEAN_TYPE = 3 for GenApi::EInterfaceType intfIBoolean
GENAPI_COMMAND_TYPE = 4 for GenApi::EInterfaceType intfICommand
GENAPI_FLOAT_TYPE = 5 for GenApi::EInterfaceType intfIFloat
GENAPI_STRING_TYPE = 6 for GenApi::EInterfaceType intfIString
GENAPI_REGISTER_TYPE = 7 for GenApi::EInterfaceType intfRegister
GENAPI_ENUM_TYPE = 9 for GenApi::EInterfaceType intfIEnum
GENAPI_ENUMENTRY_TYPE = 10 for GenApi::EInterfaceType intfIEnumEntry

value_string_size Size, in bytes, of the storage pointed to by “value_string” that is to contain
string version of the feature value.

value_string Pointer to storage at which string version of the value is copied on return.
Return Value

GEVLIB_OK on success.

GevSetFeatureValue
GEV_STATUS GevSetFeatureValue (GEV_CAMERA_HANDLE handle, const char *feature_name,

 int value_size, void *value)

Description

Writes the value of a feature. This function is intended to be used from C code, where the GenApi
object class accesses are not supported.

Note : The corresponding GenApi::CNodeMapRef object must already be associated with the camera
handle via call to GevConnectFeatures.
Parameters

handle Handle to the camera.
feature_name String containing the name of the feature to be accessed.
value_size Size, in bytes, of the storage pointed to by “value” that contains the data to be

written to the feature node being accessed.
Note: The feature node already knows the type of data that it expects.

value Pointer to storage at which the data to be written is located.
Return Value

GEVLIB_OK on success.

44 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevSetFeatureValueAsString
GEV_STATUS GevSetFeatureValueAsString (GEV_CAMERA_HANDLE handle, const char

 *feature_name, char *value_string);

Description

Writes the value of a feature using its string representation.
This function is useful in C and C++ code, especially for representing feature names and values in a
GUI program.

Note : The corresponding GenApi::CNodeMapRef object must already be associated with the camera
handle via call to GevConnectFeatures.
Parameters

handle Handle to the camera.
feature_name String containing the name of the feature to be accessed.
value_string_size Size, in bytes, of the storage pointed to by “value_string” that contains the string

version of the feature value.
value_string Pointer to storage for the string version of the value being written.
Return Value

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 45

Example C Code : Open camera and access features
GEV_DEVICE_INTERFACE pCamera[MAX_CAMERAS] = {0};
int numCamera = 0;
int camIndex = 0;
int type;
GEV_CAMERA_HANDLE handle = NULL;
char xmlFileName[MAX_PATH] = {0};
UINT32 height, width;
UINT64 size;
char pixelfmt[64] = {0};

// Get camera list.
GevGetCameraList(pCamera, MAX_CAMERAS, &numCamera);

// Open the camera you want
GevOpenCamera(&pCamera[camIndex], GevExclusiveMode, &handle);

// Get the image dimensions, payload size, and format.
GevGetFeatureValue(handle, “Height”, &type, sizeof(height), &height);
GevGetFeatureValue(handle, “Width”, &type, sizeof(width), &width);
GevGetFeatureValue(handle, “PayloadSize”, &type, sizeof(size), &size);

GevGetFeatureValueAsString(handle, “PixelFormat”, &type, sizeof(pixelfmt), pixelfmt);

Example C++ Code: Open camera and set up access to the
GenICam Feature Node Map for GenApi access.

GEV_DEVICE_INTERFACE pCamera[MAX_CAMERAS] = {0};
int numCamera = 0;
int camIndex = 0;
GEV_CAMERA_HANDLE handle = NULL;
UINT64 payload_size;
UINT32 pixel_format;

// Get camera list.
GevGetCameraList(pCamera, MAX_CAMERAS, &numCamera);

// Open the camera you want
GevOpenCamera(&pCamera[camIndex], GevExclusiveMode, &handle);

// Get the payload parameters (for buffer memory allocation)
GevGetPayloadParameters(handle, &payload_size, &pixel_format);

// Get GenICam FeatureNodeMap object and access the camera features.
 GenApi::CNodeMapRef *Camera = \

static_cast<GenApi::CNodeMapRef*>(GevGetFeatureNodeMap(handle));

 < … GenApi access to features from here on via Camera object … >

46 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

Camera GenICam Feature Access – Manual Setup
This section describes the functions provided for manually setting up access to XML-defined GenICam
features. The functions show how to retrieve the XML definitions from a camera, how to instantiate a
GenICam feature node tree, how to associate/connect the node tree to a camera.

These functions are intended to be used in embedded systems where their might not be disk storage
present to store the XML definitions to a file.

(The “manual_xml_handling” member of the GEVLIB_CONFIG_OPTIONS structure should be non-zero
(true) in order to circumvent the automatic setup of XML feature access and allow it to be performed
manually).

Member Function Overview
Function Description

GevGetGenICamXML_FileName Retrieves the name of the file (if any) used to
initialize the GenICam features.

GevInitGenICamXMLFeatures Initializes access to GenICam features based on the
XML file in the camera.

GevInitGenICamXMLFeatures_FromFile Initializes access to GenICam features based on an
XML file on disk.

GevInitGenICamXMLFeatures_FromData Initializes access to GenICam features based on XML
data in a string.

Gev_RetrieveXMLData Retrieves the XML data from the camera.
Gev_RetrieveXMLFile Retrieves the XML file from the camera.
GevConnectFeatures Connects a feature node map to a camera handle.

Member Function Descriptions
The following functions are members of the Camera GenICam Feature Access (Manual Setup) group.

Gev_RetrieveXMLData
GEV_STATUS Gev_RetrieveXMLData (GEV_CAMERA_HANDLE handle, int size, char

 *xml_data, int *num_read, int *data_is_compressed);

Description

Retrieves XML data used for the camera from the camera itself. The data is returned in the location
pointed to by the input data buffer. The number of bytes read from the camera is also returned.
Note: If the input buffer pointer is NULL, the function returns the required size of the XML data buffer.
Parameters

handle Handle to the camera.
size Size (in bytes) of the XML data buffer passed in.
xml_data Pointer to storage to hold XML data read from the camera.
num_read Pointer to hold the number of bytes read from the camera. If the “xml_data”

pointer is NULL, the required buffer size is returned here.
data_is_compressed Pointer to hold a flag indicating if the returned XML data is compressed (1 for

true) or not (0 for false)
Return Value

GEVLIB_OK on success.

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 47

Gev_RetrieveXMLFile
GEV_STATUS Gev_RetrieveXMLFile (GEV_CAMERA_HANDLE handle, char *filename, int size,

 BOOL force_download);

Description

Retrieves the name of the XML file to use for the camera. If the XML file has not yet been
downloaded from the camera, it is downloaded and stored in the subdirectory
'xml/<manufacturer>' of the installation directory pointed to by the GIGEV_XML_DOWNLOAD
environment variable.

If the GIGEV_XML_DOWNLOAD environment variable is not set, the XML file is stored in the
'xml/<manufacturer>' subdirectory of the program executing.

Generally, once the XML file is already on the local disk, it is not downloaded again. If the
"force_download" flag is set, the XML file is downloaded, regardless of whether it is on the disk or
not.

Parameters

handle Handle to the camera.
filename Pointer to a string to receive the XML file name (as stored in the camera)
size Number of bytes available to store the file name in the filename string.
force_download If TRUE, the XML file is always downloaded from the camera overwriting the file on

disk.
If FALSE, the XML file is downloaded from the camera only if it does not exist on
disk.

Return Value

GEVLIB_OK on success.

GevConnectFeatures
GEV_STATUS GevConnectFeatures(GEV_CAMERA_HANDLE handle, void *featureNodeMap);

Description

Connects a GenApi::CNodeMapRef object with the device port associated with the camera handle. The
CNodeMapRef object is passed in as a void pointer.
Note: There is no way for the API to verify, ahead of time, that the void pointer provided is indeed a
pointer to a valid GenApi::CNodeMapRef object. An error is returned, however, if the GenApi
environment throws an exception while attempting to use the pointer as a GenApi::CNodeMapRef for
the connection to the device port

Parameters

handle Handle to the camera.
featureNodeMap Void pointer that is assumed to point to a GenApi::CNodeMapRef object that is to

be associated with the input camera handle. The feature node map is accessed to
initialize internal access to mandatory features as well as some useful ones.

Return Value

GEVLIB_OK on success.

48 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevGetGenICamXML_FileName
GEV_STATUS GevGetGenICamXML_FileName (GEV_CAMERA_HANDLE handle, int size,

 char *xmlFileName);

Description

Returns the full path name of the XML file that was used to create the GenApi::CNodeMapRef object
containing the feature tree for the camera.

Note: If the XML data is from a string/data buffer, or from the camera but not stored on disk, then the
returned file name is blank.

Parameters

handle Handle to the camera.
size Size (in bytes) allocated to hold the full path name of the XML file currently in use.
xmlFileName The full path name of the XML file that is in use.

GevInitGenICamXMLFeatures
GEV_STATUS GevInitGenICamXMLFeatures(GEV_CAMERA_HANDLE handle, BOOL updateXMLFile);
Description

Retrieves the GenICam XML file from the camera and uses it to initialize internal access to the
GenICam GenApi via an internal GenApi::CNodeMapRef object connected to the camera. Optionally,
the XML file read from the camera is stored to disk.

Parameters

handle Handle to the camera.
updateXMLFile The GenApi:CNodeMapRef object is created from the XML data retrieved from the

camera accessed via the camera handle.
If this flag is false, the XML file is not stored to disk.
If this flag is true, the XML file is stored to disk. The location (path) to the stored XML
files will be relative to the GIGEV_XML_DOWNLOAD environment variable. The path
will be:
$GIGEV_XML_DOWNLOAD/xml/download.
If that location is not writable by the application, the XML file will be stored in the
“current” directory that the executable is running in.

Return Value

GEVLIB_OK on success

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 49

GevInitGenICamXMLFeatures_FromData
GEV_STATUS GevInitGenICamXMLFeatures_FromData (GEV_CAMERA_HANDLE handle, int size,

 void *xmlDataBuffer);

Description

Initializes internal access to the GenICam GenApi, using the GenICam XML data string contained in
the xmlDataBuffer, via an internal GenApi::CNodeMapRef object connected to the camera.

Parameters

handle Handle to the camera.
size Size (in bytes) of the XML data string passed in (including the terminating NULL ‘\0’).

To aid in detection of an invalid XML definition.
xmlDataBuffer Data array (string) containing a properly qualified XML definition for creating the

GenApi::CNodeMapRef object.

GevInitGenICamXMLFeatures_FromFile
GEV_STATUS GevInitGenICamXMLFeatures_FromFile (GEV_CAMERA_HANDLE handle,

 char *xmlFileName);

Description

Initializes internal access to the GenICam GenApi, using the GenICam XML file identified by name, via
an internal GenApi::CNodeMapRef object connected to the camera.

Parameters

Handle Handle to the camera.
xmlFileName Full path name of the XML file used to create the GenAPI::CNodeMapRef object.

50 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GenICam GenApi Feature Access through XML
This section describes how to use the GenApi feature node tree directly. Code examples, in C++, are
given to aid in using the GenApi interface provided by the GenICam standard libraries.

Example C++ Code: Simplified Access to GenICam Feature Node
Map

GEV_DEVICE_INTERFACE pCamera[MAX_CAMERAS] = {0};
int numCamera = 0;
int camIndex = 0;
GEV_CAMERA_HANDLE handle = NULL;

// Get camera list.
GevGetCameraList(pCamera, MAX_CAMERAS, &numCamera);

// Open the camera you want
GevOpenCamera(&pCamera[camIndex], GevExclusiveMode, &handle);

// Set up feature access using the XML file retrieved from the camera

 GenApi::CNodeMapRef *Camera = \
 static_cast<GenApi::CNodeMapRef*>(GevGetFeatureNodeMap(handle));

 < … GenApi access to features from here on via pointer to Camera object … >

Example C++ Code: Retrieve a Pointer to the GenICam Feature
Node Map and Use GenApi Directly

 GenApi::CNodeMapRef *pCamera = \
 static_cast<GenApi::CNodeMapRef*>(GevGetFeatureNodeMap(handle));

 if (pCamera)
 {

 // Access the features (by pointer)
 GenApi::CIntegerPtr ptrIntNode = pCamera->_GetNode("Width");
 UINT32 width = (UINT32) ptrIntNode->GetValue();
 ptrIntNode = pCamera->_GetNode("Height");
 UINT32 height = (UINT32) ptrIntNode->GetValue();

 GenApi::CEnumerationPtr ptrEnumNode = pCamera->_GetNode("PixelFormat") ;
 format = (UINT32)ptrEnumNode->GetIntValue();

 }

For developers wanting to handle the management of the XML and feature node map themselves,
either to wrap it all in an application level class or to alter the default handling of the XML, the
following code examples are provided.

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 51

Example C++ Code: Read XML as Data and Manually Instantiate
a GenICam Feature Node Map for the Camera

GEV_DEVICE_INTERFACE pCamera[MAX_CAMERAS] = {0};
GEVLIB_CONFIG_OPTIONS options = {0};
int numCamera = 0;
int camIndex = 0;
GEV_CAMERA_HANDLE handle = NULL;
GenApi::CNodeMapRef Camera;

 // Set manual XML handling mode for the library.
 GevGetLibraryConfigOptions(&options);
 options. manual_xml_handling = 1;
 GevSetLibraryConfigOptions(&options);

// Get camera list.
GevGetCameraList(pCamera, MAX_CAMERAS, &numCamera);

// Open the camera you want
GevOpenCamera(&pCamera[camIndex], GevExclusiveMode, &handle);

// Retrieve the XML data from the camera
{

int xmlFileSize = 0;
 char *pXmlData;
 BOOL compressed_data = 0;

 Gev_RetrieveXMLData(handle, 0, NULL, &xmlFileSize);
 xmlFileSize = (xmlFileSize + 3) & (~3));
 pXmlData = (char *)malloc(xmlFileSize + 1);
 Gev_RetrieveXMLData(handle, xmlFileSize, pXmlData, &xmlFileSize, &compressed_data);
 pXmlData[xmlFileSize] = 0;
 GenICam::gcstring xmlStr(pXmlData);

 // Generate the feature node map from the XML data.

 if (compressed_data)
 {
 Camera._LoadXMLFromZIPData(xmlStr);
 }
 else
 {
 Camera._LoadXMLFromString(xmlStr);
 }
 free(pXmlData);
}

// Connect the camera to the feature map
GevConnectFeatures(handle, (void *)&Camera);

< … GenApi access to features from here on via Camera object … >

52 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

Example C++ Code: Use a previously stored XML File and
Manually Instantiate a GenICam Feature Node Map for the
Camera

GEV_DEVICE_INTERFACE pCamera[MAX_CAMERAS] = {0};
GEVLIB_CONFIG_OPTIONS options = {0};
int numCamera = 0;
int camIndex = 0;
GEV_CAMERA_HANDLE handle = NULL;
GenApi::CNodeMapRef Camera;

 // Set manual XML handling mode for the library.
 GevGetLibraryConfigOptions(&options);
 options. manual_xml_handling = 1;
 GevSetLibraryConfigOptions(&options);

// Get camera list.
GevGetCameraList(pCamera, MAX_CAMERAS, &numCamera);

// Open the camera you want
GevOpenCamera(&pCamera[camIndex], GevExclusiveMode, &handle);

// Set up the XML data from a previously saved file.{
 char xmlFileName[MAX_PATH] = ”TeledyneDALSA_Nano-IMX249_Mono_2M.xml”;
 Camera._LoadXMLFromFile(xmlFileName);
}

// Connect the camera to the feature map
GevConnectFeatures(handle, (void *)&Camera);

 < … GenApi access to features from here on via Camera object … >

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 53

Image Frame Acquisition
This section describes functions that perform acquisition of image frames. Frames include both image
data and metadata.

Member Function Overview
Function Description

GevGetPayloadParameters Retrieves the mandatory, payload specific information that identifies
the size and format of data that the device will stream.

GevInitializeTransfer Initializes a streaming transfer to the list of buffers indicated.
GevWaitForNextFrame Waits for the next frame object to be acquired and returns its

pointer.
GevGetNextFrame Waits for the next frame object to be acquired and returns its

pointer.
GevReleaseFrameBuffer Releases a frame object back to the acquisition process for re-use.
GevReleaseFrame Releases a frame object back to the acquisition process for re-use.
GevStopTransfer Stops the streaming transfer.
GevAbortTransfer Stops the streaming transfer immediately.
GevFreeTransfer Frees a streaming transfer to the list of buffers indicated.

54 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

Structure Definition: GEVBUF_HEADER
The image buffer header structure is defined as follows:

typedef struct
{

UINT32 payload_type; // Type of payload received (Image(1), Raw(2), (etc..)
UINT32 state; // Full/empty state for payload buffer (tag used for buffer cycling)
INT32 status; // Frame Status as GEV_FRAME_STATUS_* (see below)
UINT32 timestamp_hi; // Most 32 significant bit of the timestamp (for legacy code)
UINT32 timestamp_lo; // Least 32 significant bit of the timestamp (for legacy code)
UINT64 timestamp; // 64bit version of timestamp for payload
UINT64 recv_size; // Received size of entire payload (including all appended "chunk"

//(metadata) information) .
UINT64 id; // Block id for the payload (starts at 1, may wrap to 1 at 65535).

// Image specific payload entries.
UINT32 h; // Received height (lines) for an image payload.
UINT32 w; // Received width (pixels) for an image payload.
UINT32 x_offset; // Received x offset for origin of ROI for an image payload_type.
UINT32 y_offset; // Received y offset for origin of ROI for an image payload_type.
UINT32 x_padding; // Received x padding bytes for an image payload_type
UINT32 y_padding; // Received y padding bytes for an image payload_type
UINT32 d; // Received pixel depth (bytes per pixel
UINT32 format; // Received GigE Vision pixel format for image types.
PUINT8 address; // Address of the "payload_type" data

//
// New entries for non-image payload types
//

PUINT8 chunk_data; // Address of "chunk" data (metadata) associated with the received
// payload (NULL if no "chunk" data (metadata) is available).

 // The "chunk_data" address is provided here as a shortcut. It
 // address immediately following the end of "paylod_type" data)

UINT32 chunk_size; // The size of the chunk_data (uncompressed). Zero if no "chunk" data
// (metadata) is available.
// The "chunk_size" is provided as a helper for decoding raw
// TurboDrive compressed data in passthru mode)
//

 char filename[256]; // Name of file for payload type "file" (0 terminated string, 255
 //characters maximum system limit in Linux).

} GEVBUF_HEADER, *PGEVBUF_HEADER;

For the various frame reception functions (GevWaitForNextFrame, GevGetNextFrame) the status of
the image data should be checked by looking at the “status” member of the GEVBUF_HEADER to
verify if all the data was received.

The actual image data received so far is present in the data buffer pointed to by "address" but the
data may be incomplete if the “status” member is not 0.

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 55

Frame Status Values
Frame Status values returned by the status member are :

Define Value Definition

GEV_FRAME_STATUS_RECVD 0 Frame is complete.

GEV_FRAME_STATUS_PENDING 1 Frame is in progress. A frame (data) is currently being
written to the buffer. This value is returned only in
Asynchronous buffer cycling mode when the
capture/receive thread is re-using this buffer internally
for a subsequent frame at the same time as a previous
frame is being examined by the program.

In Synchronous buffer cycling mode, this value not
returned as a buffer cannot be re-used internally until it
is returned to the transfer for re-use.

GEV_FRAME_STATUS_TIMEOUT 2 Frame in-progress was not ready before timeout
condition met.

Acquisition of a frame (data) had started but was not
completed before the specified frame timeout period
expired. (The timeout period is the
“streamFrame_timeout_ms“ member of the
GEV_CAMERA_OPTIONS structure.) While there is data in
the buffer from this frame, there is no way to know which
data packets are missing.

Possible reasons for the frame not being complete are:

a) The timeout is set for too short of a time. This can
happen with linescan camera having slow line rates or
line triggers from an external source that can generate
long frame times.

b) Packets were dropped(*) and the timeout expired
before all the resend operations were complete.

56 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GEV_FRAME_STATUS_OVERFLOW
3 Frame in-progress was not complete before the internal

queue of frames in-progress was full.

The frame in-progress was abandoned before its
completion due to a new frame arriving while the internal
FIFO of frames in-progress was full. The internal FIFO
size can be increased with the
“streamNumFramesBuffered” member in the
GEV_CAMERA_OPTIONS structure. While there is data in
the buffer from this frame, there is no way to know which
data packets are missing.

Possible reasons for the internal FIFO of frames in-
progress to be full are :

a) The FIFO size is too small.

b) The Frame rate from the camera is very high (kHz).
When frame rates are higher than the operating system
scheduler context switching rate (times the number of
CPU cores) multiple frame completions can become
pending simultaneously, causing the FIFO to fill while it
waits to complete frames in order of their block ID.

c) Packets were dropped(*) and the delay in the resend
operations completing has caused the FIFO to fill while it
waits to complete frames in order.

GEV_FRAME_STATUS_BANDWIDTH 4 Frame in-progress had too many resend operations .

The frame in-progress had dropped packets(*) and too
many packet resends have been generated in an attempt
to recover the frame. The “streamMaxPacketResends”
member in the GEV_CAMERA_OPTIONS structure controls
the maximum number of retries. By default, it is set to
twice the number of packets in a frame. While there is
data in the buffer from this frame, there is no way to
know which data packets are missing.

GEV_FRAME_STATUS_LOST 5 Frame in-progress had resend operations that failed.
The frame in-progress had dropped packets(*) and at
least one of the requests for a packet resend has failed.
This frame has a missing packet that cannot be recovered
so this frame is lost. While there is data in the buffer
from this frame, there is no way to know which data
packets are missing.

<other value> <16-bit> 16-bit Status value from the camera itself. (Device /
Vendor specific).

* To minimize the possibility of packets being dropped, the network tuning mechanisms provided in
the gev_nettweak script should be adopted (see the Performance Tuning section). These are:

• Increasing the MTU minimizes the number of packets in a frame.

• Increasing the rx memory (net.core.rmem_max) allows more packets to queue on the network
stack

• Increasing the packet backlog (net.core.netdev_max_backlog) allows more packets to queue
before being processed onto the network stack.

For most Gigabit NIC types, using the PF_PACKET interface (via cap_net_raw or “sudo -E”) with a
maximized MTU provides the best defence against packet being dropped.

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 57

Supported Pixel Formats
The GigE Vision standard and the AIA’s PFNC (Pixel Format Naming Convention) define a large set of
pixel formats. Most formats can be handled by simply copying them to an application program’s
allocated buffer. Some format (namely packed formats), require processing to separate the pixels (or
pixel components) from one another to aid in further processing or display.

The GigE-V Framework provides default internal processing for some formats that require it. The
currently supported values for pixel format and the default processing available is provided in the
following table. A blank entry for default handling, or a pixel format not specified here, indicates a
simple copy of the data to the destination buffer.

Note: If “passthru_mode” is enabled for the connection to the camera, all formats are simply copied to
the destination buffer, retaining their original payload layout.

Name (enum) Value Description Default Handling

fmtMono8 0x01080001 8 Bit Mono Unsigned

fmtMono8Signed 0x01080002 8 Bit Mono Signed

fmtMono10 0x01100003 10 Bit Mono Unsigned

fmtMono10Packed 0x010C0004 10 Bit Mono Packed Unpacked to fmtMono10

fmtMono12 0x01100005 12 Bit Mono Unsigned

fmtMono12Packed 0x010C0006 12 Bit Mono Packed Unpacked to fmtMono12

fmtMono14 0x01100025 14 Bit Mono Unsigned

fmtMono16 0x01100007 16 Bit Mono Unsigned

fmtBayerGR8 0x01080008 8-bit Bayer GR (*) See Note on Bayer support

fmtBayerRG8 0x01080009 8-bit Bayer RG (*) See Note on Bayer support

fmtBayerGB8 0x0108000A 8-bit Bayer GB (*) See Note on Bayer support

fmtBayerBG8 0x0108000B 8-bit Bayer BG (*) See Note on Bayer support

fmtBayerGR10 0x0110000C 10-bit Bayer GR (*) See Note on Bayer support

fmtBayerRG10 0x0110000D 10-bit Bayer RG (*) See Note on Bayer support

fmtBayerGB10 0x0110000E 10-bit Bayer GB (*) See Note on Bayer support

fmtBayerBG10 0x0110000F 10-bit Bayer BG (*) See Note on Bayer support

fmtBayerGR10Packed 0x010C0026 10-bit Bayer GR packed Unpacked to fmtBayerGR10

fmtBayerRG10Packed 0x010C0027 10-bit Bayer RG packed Unpacked to fmtBayerRG10

fmtBayerGB10Packed 0x010C0028 10-bit Bayer GB packed Unpacked to fmtBayerGB10

fmtBayerBG10Packed 0x010C0029 10-bit Bayer BG packed Unpacked to fmtBayerBG10

fmtBayerGR12 0x01100010 12-bit Bayer GR (*) See Note on Bayer support

fmtBayerRG12 0x01100011 12-bit Bayer RG (*) See Note on Bayer support

fmtBayerGB12 0x01100012 12-bit Bayer GB (*) See Note on Bayer support

fmtBayerBG12 0x01100013 12-bit Bayer BG (*) See Note on Bayer support

fmtBayerGR12Packed 0x010C002A 12-bit Bayer GR packed Unpacked to fmtBayerGR12

fmtBayerRG12Packed 0x010C002B 12-bit Bayer RG packed Unpacked to fmtBayerRG12

58 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

fmtBayerGB12Packed 0x010C002C 12-bit Bayer GB packed Unpacked to fmtBayerGB12

fmtBayerBG12Packed 0x010C002D 12-bit Bayer BG packed Unpacked to fmtBayerBG12

fmtRGB8Packed 0x02180014 8 Bit RGB Unsigned

fmtBGR8Packed 0x02180015 8 Bit BGR Unsigned

fmtRGBA8Packed 0x02200016 8 Bit RGBA Unsigned

fmtBGRA8Packed 0x02200017 8 Bit BGRA Unsigned

fmtRGB10Packed 0x02300018 10 Bit RGB Unsigned

fmtBGR10Packed 0x02300019 10 Bit BGR Unsigned

fmtRGB12Packed 0x0230001A 12 Bit RGB Unsigned

fmtBGR12Packed 0x0230001B 12 Bit BGR Unsigned

fmtRGB14Packed 0x0230005E 14 Bit RGB Unsigned

fmtBGR14Packed 0x0230004a 14 Bit BGR Unsigned

fmtRGB16Packed 0x02300033 16 Bit RGB Unsigned

fmtBGR16Packed 0x0230004B 16 Bit BGR Unsigned

fmtRGBA16Packed 0x02400064 16 Bit RGBA Unsigned

fmtBGRA16Packed 0x02400051 16 Bit BGRA Unsigned

fmtYUV411packed 0x020C001E YUV411 (composite
color)

(*) See Note on Packed Color support

fmtYUV422packed 0x0210001F YUV422 (composite
color)

(*) See Note on Packed Color support

fmtYUV444packed 0x02180020 YUV444 (composite
color)

(*) See Note on Packed Color support

fmtRGB10V1Packed 0x0220001C 10 Bit RGB custom V1 (*) See Note on Packed Color support

fmtRGB10V2Packed 0x0220001D 10 Bit RGB custom V2 (*) See Note on Packed Color support

Note : Bayer Support
By default, the GigE-V Framework will deliver Bayer formats to application programs as Monochrome
data. A simple Bayer to RGB conversion capability is available in the common (shared) utility functions
provided with the example programs. The Bayer conversion implementation provided is naïve in its
complexity and is located outside of the Framework itself so it can be easily replaced by a more
sophisticated converter of the end-user’s choice.

Note: Packed Color Support
Packed Color support is limited to conversion of the received pixel data to RGB for display purposes.
Some older cameras from Teledyne DALSA (namely the Genie Color family) were able to output data
in these formats. The original support for conversion to a displayable form remains in the common
(shared) functions provided with the example programs.

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 59

Member Function Descriptions
The following functions are members of the Frame Acquisition group.

GevAbortTransfer
GEV_STATUS GevAbortTransfer(GEV_CAMERA_HANDLE handle);

Description

Stops the streaming transfer immediately.

Parameters

handle Handle to the camera

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_XFER_NOT_INITIALIZED
GEVLIB_ERROR_XFER_NOT_ACTIVE

GevFreeTransfer
GEV_STATUS GevFreeTransfer(GEV_CAMERA_HANDLE handle);

Description

Frees a streaming transfer to the list of buffers indicated.

Parameters

handle Handle to the camera.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_TIMEOUT (streaming thread did not respond within 5 seconds)

60 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevGetNextFrame
GEV_STATUS GevGetNextBuffer (GEV_CAMERA_HANDLE handle,

 GEV_BUFFER_OBJECT **frame_object_ptr,
 struct timeval *pTimeout);

Description

Waits for the next frame object to be acquired and returns its pointer. If no frame has been acquired
before the timeout period expires, a NULL pointer is returned.

Parameters

handle Handle to the camera
frame_object_ptr Pointer to receive the frame object pointer.
pTimeout Pointer to a struct timeval (microsecond precision) for the timeout period to wait

for the next frame.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_TIME_OUT
GEVLIB_ERROR_NULL_PTR

GevGetPayloadParameters
GEV_STATUS GevGetPayloadParameters (GEV_CAMERA_HANDLE handle, PUINT64 payload_size,

 PUINT32 format);

Description

Gets the values for the mandatory GigE Vision features “PayloadSize” and “PixelFormat” from the
attached camera for the purposes of being able to determine the memory allocation requirements for
any subsequent frame/data acquisition operations.

Parameters

payload_size The returned size (in bytes) of the payload that will be sent from the device. This
includes image data, metadata (chunks), etc.

format The returned enumerated value for the payload format. The value depends on the
camera/device model and mode of operation. See the “Supported Pixel Formats”
section.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_NULL_PTR
GEVLIB_ERROR_SOFTWARE

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 61

GevInitializeTransfer
GEV_STATUS GevInitializeTransfer (GEV_CAMERA_HANDLE handle, GevBufferCyclingMode

mode, UINT64 bufSize, UINT32 numBuffers,
UINT8 **bufAddress);

Description

Initializes a streaming transfer of frames to the list of buffers indicated. The size of the buffers and the
buffer cycling mode is also set.

Parameters

handle Handle to the camera.
mode Buffer cycling mode. Can be either :

Asynchronous: All buffers available all the time with no protection between the
application and the acquisition process.
Or
SynchronousNextEmpty; Buffers obtained by the application are available only to
the application until released back to the acquisition process. Buffers are filled in the
order they are released back to the acquisition process. If there are no more buffers
available to the acquisition process, subsequent images are not stored to memory and
are deemed to have been sent to the “trash”.

bufSize The allocated size of buffers to be used in the transfer.
numBuffers Number of buffers addresses in array.
bufAddress Array of buffer addresses (already allocated).

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID
(GEV_REGISTER struct is not for an Integer register)
GEVLIB_ERROR_ARG_INVALID
(GEV_REGISTER definition is invalid)
GEVLIB_ERROR_SOFTWARE
(GEV_REGISTER struct defines an unsupported register type)
Note: Errors include attempting to initialize the transfer on a connection that is not set
up for streaming.

62 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevQueryTransferStatus
GEV_STATUS GevQueryTransferStatus (GEV_CAMERA_HANDLE handle,

 PUINT32 pTotalBuffers, PUINT32 pNumUsed,
 PUINT32 pNumFree, PUINT32 pNumTrashed,
 GevBufferCyclingMode *pMode);

Description

This function returns status information about the frame transfer currently in progress. The total
number of buffers associated with the transfer are returned alongwith the number of filled buffers, the
number of free buffers available, and the number of buffers sent to trash The buffer cycling mode is
also returned. If the buffer cycling mode is set to Synchronous, any frames from the camera that
arrive when no free buffers are available are sent to trash (not stored) and the number of trashed
buffers is incremented. This information can be used to tell if the application is falling behind in its
handling of frames from the camera.

Parameters

handle Handle to the camera
pTotalBuffers Pointer to receive the total number of buffers in the transfer list.
pNumUsed Pointer to receive the number of filled buffers ready to be received from the transfer

list.
pNumFree Pointer to receive the number of empty (free) buffers that are available to be filled.
pNumTrashed Pointer to receive the total number of buffers that have been “trashed” so far. (i.e.

Frames that are dropped when there are no more empty buffers to fill but image data
has still been received).

pMode Pointer to receive the current buffer cycling mode (Asynchronous=0,
SynchronousNextEmpty=1).

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID
GEVLIB_ERROR_ARG_INVALID

GevReleaseFrame
GEV_STATUS GevReleaseFrame (GEV_CAMERA_HANDLE handle,

 GEV_BUFFER_OBJECT **frame_object_ptr);

Description

Releases a buffer object back to the acquisition process for re-use. It is mandatory to call this function
for a transfer using the SynchronousNextEmpty cycle mode in order to avoid running out of buffers for
the acquisitions process to fill. It is not necessary to call this function for a transfer using the
Asynchronous cycle mode.

Parameters

handle Handle to the camera
frame_object_ptr Pointer to the buffer object being released.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID
GEVLIB_ERROR_ARG_INVALID

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 63

GevReleaseFrameBuffer
GEV_STATUS GevReleaseFrameBuffer(GEV_CAMERA_HANDLE handle, void **frame_buffer_ptr);

Description

Releases a buffer object back to the acquisition process for re-use. The buffer object is identified from
the frame buffer pointer passed in to the function. It is mandatory to call this function for a transfer
using the SynchronousNextEmpty cycle mode in order to avoid running out of buffers for the
acquisition process to fill. It is not necessary to call this function for a transfer using the Asynchronous
cycle mode.

Parameters

handle Handle to the camera
frame_buffer_ptr Pointer to the frame buffer data for the image object being released,.

Return Value

GEV_STATUS Possible values are
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID
GEVLIB_ERROR_ARG_INVALID

GevStartTransfer
GEV_STATUS GevStartTransfer(GEV_CAMERA_HANDLE handle, UINT32 numFrames);

Description

Starts the streaming transfer.

Parameters

handle Handle to the camera
numFrames Number of frames to be acquired (-1 for continuous).

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEV_STATUS_BUSY (camera is busy reconfiguring – try again later)
GEVLIB_ERROR_XFER_NOT_INITIALIZED
GEVLIB_ERROR_XFER_ACTIVE

64 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevStopTransfer
GEV_STATUS GevStopTransfer(GEV_CAMERA_HANDLE handle);

Description

Stops the streaming transfer.

Parameters

handle Handle to the camera

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_XFER_NOT_INITIALIZED
GEVLIB_ERROR_XFER_NOT_ACTIVE

GevWaitForNextFrame
GEV_STATUS GevWaitForNextFrame (GEV_CAMERA_HANDLE handle,

 GEV_BUFFER_OBJECT **frame_object_ptr,
 struct timeval *pTimeout);

Description

Waits for the next frame object to be acquired and returns its pointer. If no frame has been acquired
before the timeout period expires, a NULL pointer is returned.

Parameters

handle Handle to the camera
frame_object_ptr Pointer to receive the frame object pointer.
timeout Timeout period (in msec) to wait for the next frame to arrive.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_TIME_OUT
GEVLIB_ERROR_NULL_PTR

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 65

Asynchronous Camera Event Handling
The GVCP asynchronous message channel is available only to applications using the primary control
channel. Support for it is automatically enabled when a camera is opened with access mode
GevExclusiveMode or GevControlMode.

The supported EVENT_CMD and EVENTDATA_CMD events are found in the device’s XML file. Signaling
of these events needs to be enabled via calls to GevWriteReg using the proper address and enable
values.

GigE-V Framework API allows an application to register two actions for an event. On receipt of an
event, an application may have a callback function invoked and/or an event object can be signaled. In
this case the application event is signaled before the callback function is invoked. A single call to
GevUnregisterEvent will cause both the application event and the callback function to be unregistered.

Note that the callback is performed synchronously with the delivery of the event message from the
camera. Care should be taken to complete the callback processing quickly so that subsequent
messages are not lost. If lengthy processing is required, the callback is responsible for saving the
contents of the EVENT_MSG data structure and the “data” buffer and signaling some other
asynchronous processing context (thread) to perform that processing. Once the callback function
returns, the contents of the EVENT_MSG structure (msg) and the ‘data’ buffer are no longer valid and
will be overwritten by the asynchronous message.

The following functions provide this service.

Member Function Overview
Function Description

GEVEVENT_CBFUNCTION Type Definition
GevRegisterEventCallback Register an Event Callback
GevRegisterApplicationEvent Register an Application Event
GevUnregisterEvent Un-register an Application Event

66 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

Member Function Descriptions
The following functions are members of the Asynchronous Camera Event Handling group.

GEVEVENT_CBFUNCTION
typedef void (*GEVEVENT_CBFUNCTION)
 (PEVENT_MSG msg, PUINT8 data, UINT16 size, void *context);

Parameters

msg Pointer to an EVENT_MSG structure containing information on the intercepted event.
Here the data structure is defined as :
typedef struct
{
 UINT16 eventNumber;
 UINT16 streamChannelIndex;
 UINT64 blockId;
 UINT64 timestamp;
 UINT32 timeStampHigh;
 UINT32 timeStampLow;
} EVENT_MSG, *PEVENT_MSG;

 where:
 eventNumber The event number that caused the callback to be invoked.
 streamChannelIndex The streaming data channel identifier that caused the event to

be sent in the first place.
 blockId The blockId associated with this event.
 timestamp 64-bit timestamp for this event (based on camera’s timestamp

timebase).
 timeStampHigh

timeStampLow
High (MSB) 32-bits of 64-bit timestamp
Low (LSB) 32-bits of 64-bit timestamp

data Pointer to event data returned from the camera if the particular event intercepted also
sends data. It is NULL if not data has been sent.

size Size of the event data returned by the camera.
(It is zero if the particular event intercepted does not send any data).

context Pointer to context data set up at the time of the callback’s registration.

Return Value

VOID

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 67

GevRegisterApplicationEvent
GEV_STATUS GevRegisterApplicationEvent (GEV_CAMERA_HANDLE handle,

 UINT32 EventID, _EVENT appEvent);

Description

Registers an Application Event

Parameters

handle GEV_CAMERA_HANDLE identifying the camera whose events are to be intercepted by
the application.

EventID Specific EventID of the event to be intercepted. They are usually defined in the XML
file for the camera.

appEvent Event handle. The _EVENT type is aliased to the HANDLE data type used by the
CorW32 helper library that provides WIN32-like constructs to the Linux environment.
In this case, the HANDLE is for a WIN32-like event that is, essentially, a thin wrapper
around a pthread condition variable.

Return Value

GEV_STATUS GEVLIB Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEV_STATUS_ERROR (too many registration calls have been made for this
camera – 16 maximum)

GevRegisterEventCallback
GEV_STATUS GevRegisterEventCallback (GEV_CAMERA_HANDLE handle, UINT32 EventID,

 GEVEVENT_CBFUNCTION func, void *context);

Description

Registers an Event Callback

Parameters

handle GEV_CAMERA_HANDLE identifying the camera whose events are to be intercepted by
the application.

EventID Specific EventID of the event to be intercepted. They are usually defined in the XML
file for the camera.

func Function to call when EventID is signaled. The function is of type
GEVEVENT_CBFUNCTION.

context Pointer to context data set up at the time of the callback’s registration and passed to
‘func’.

Return Value

GEV_STATUS GEVLIB Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEV_STATUS_ERROR (too many registration calls have been made for this
camera – 16 maximum)

68 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevUnregisterEvent

GEV_STATUS GevUnregisterEvent(GEV_CAMERA_HANDLE handle, UINT32 EventID);

Description

Un-register an Application Event

Parameters

handle GEV_CAMERA_HANDLE identifying the camera whose events are to be intercepted by
the application.

EventID The particular EventID of the event to be intercepted. They are usually defined in the
XML file for the camera.

Return Value

GEV_STATUS GEVLIB Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEV_STATUS_ERROR (eventID not found)

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 69

Manual Camera Detection and Configuration
(Advanced Topic)
For situations where the automatic detection and configuration of cameras is not wanted, functions are
provided to manually set up the camera in the system.

Member Function Overview
Function Description

GevEnumerateNetworkInterfaces Fills a list of network interfaces visible from the application.
GevEnumerateGevDevices Fills a list of device interfaces visible from the application

through a particular network interface.
GevSetCameraList Manually fills the internal camera information list.
GevForceCameraIPAddress Forces the IP address of a device to a known value.
Gev_Reconnect Reconnects a camera that has become disconnected.

Structure Definition: GEV_NETWORK_INTERFACE
typedef struct
{
 BOOL fIPv6;
 UINT32 ipAddr;
 UINT32 ipAddrLow;
 UINT32 ipAddrHigh;
 UINT32 ifIndex;
} GEV_NETWORK_INTERFACE, *PGEV_NETWORK_INTERFACE;

Where:
 fIPv6 Is TRUE/FALSE for the NIC having an IPv6 address.

 (GigE Vision is currently only supported on IPv4).
 ipAdd 32-bit IP address (IPv4) for the NIC card.
 ipAddrLow Low 32-bits of a 64-bit IPv6 address for the NIC card.

 (GigE Vision is currently only supported on IPv4).
 ipAddrHigh High 32-bits of a 64-bit IPv6 address for the NIC card.

 (GigE Vision is currently only supported on IPv4).
 ifIndex The O/S internal index of the network interface, set by the system.

 It is required for the GigE-V Framework API under Linux to provide access to the
 high performance packet interface (PF_PACKET protocol).

70 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

Structure Definition: GEV_CAMERA_INFO
typedef struct
{
 BOOL fIPv6;
 UINT32 ipAddr;
 UINT32 ipAddrLow;
 UINT32 ipAddrHigh;
 UINT32 macLow;
 UINT32 macHigh;
 GEV_NETWORK_INTERFACE host;
 UINT32 capabilities;
 char manufacturer[65];
 char model[65];
 char serial[65];
 char version[65];
 char username[65];
} GEV_CAMERA_INFO, *PGEV_CAMERA_INFO;

Member Function Descriptions
The following functions are members of the Manual Camera Detection and Configuration (Advanced
Topic) group.

Gev_Reconnect
GEV_STATUS Gev_Reconnect(GEV_CAMERA_HANDLE handle);

Description

Reconnects a camera that has become disconnected. A camera can become disconnected when it is
temporarily/briefly unplugged from the network. A disconnected camera cannot always be restored
using this function. If an error is returned, the program should consider closing and re-opening the
camera and restarting any initialized transfers.

Note: A disconnection that results in the camera losing its IP address cannot be recovered from. A
camera can lose its IP address through a power cycle, through having the camera’s heartbeat timer
expire (usually due to running an application in a debugger and remaining too long at a breakpoint),
or through unplugging the network cable when the camera is not in a persistent IP address mode.

Parameters

handle Camera handle

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEV_STATUS_ERROR (camera is not actually disconnected)
Other error from writing to the camera.

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 71

GevEnumerateGevDevices
GEV_STATUS GevEnumerateGevDevices (GEV_NETWORK_INTERFACE *pIPAddr,

 UINT32 discoveryTimeout,
 GEV_DEVICE_INTERFACE *pDevice, UINT32 maxDevices,
 PUINT32 pNumDevices);

Description

Fills a list of device interfaces visible from the application through a particular network interface.

Parameters

pIPAddr Pointer to the GEV_NETWORK_INTERFACE structure to use to query the
attached network for the presence of GigE Vision camera devices.

discoveryTimeout Time, in milliseconds, to wait for a response from cameras on the attached
network.

pDevice Pointer to an array of GEV_DEVICE_INTERFACE (also known as
GEV_CAMERA_INFO) structures to contain information for cameras found on the
attached network.

maxDevices Maximum number of entries in the list pointed to by pDevice.
pNumDevices Pointer to contain the number of devices found on the network.

Return Value

GEV_STATUS Possible values are:
GEV_STATUS_SUCCESS
GEV_STATUS_ERROR (an internal error in the library)

GevEnumerateNetworkInterfaces
GEV_STATUS GevEnumerateNetworkInterfaces (GEV_NETWORK_INTERFACE *pIPAddr,

 UINT32 maxInterfaces,
 PUINT32 pNumInterfaces);

Description

Fills a list of network interfaces visible from the application.

Parameters

pIPAddr Network interface data structure (GEV_NETWORK_INTERFACE) to contain
information found for NIC cards in the system.

maxInterfaces Maximum number of interfaces for which there is storage in pIPAddr.
pNumIntefaces Number of network interfaces found.

Return Value

GEV_STATUS Always returns success (GEV_STATUS_SUCCESS / GEVLIB_OK)

72 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevForceCameraIPAddress
GEV_STATUS GevForceCameraIPAddress (UINT32 macHi, UINT32 macLo, UINT32 IPAddress,

 UINT32 subnetmask);

Description

Forces the IP address of a device to a known value. It allows for recovery from incorrect IP address
configuration. The device is identified by its MAC address and uses the known network interface list
(stored internally) to locate and access the camera for reconfiguration.

Parameters

macHi Hi 16 bits of the 48 bit MAC address for device.
macLo Low 32 bits of the 48 bit MAC address for device.
ip IP address to assign to the device when it is fond. (IPv4).
subnetmask Subnet mask to be assigned to the camera when it is found.

Return Value

GEV_STATUS Possible values are:
GEV_STATUS_SUCCESS
GEV_STATUS_ERROR
NOTE: A returned error may indicate that the command was silently discarded rather
than being an actual error.

GevSetCameraList
GEV_STATUS GevSetCameraList(GEV_CAMERA_INFO *cameras, int numCameras);

Description

Manually fills the internal camera list containing information on the GigE Vision device of interest to
the API. This allows an application to manually set up only the cameras it is interested in and skip the
"automatic" detection step.
Note: If the camera list is set manually (with at least one camera), all calls to the GevGetCameraList
function will return this manually set list. No further automatic detection will be performed. Automatic
detection can be re-enabled by setting a zero length (NULL) camera list with this function.

Parameters

camera Pointer to a list of GEV_CAMERA_INFO entries.
numCameras Number of camera / device entries in the list

Return Value

GEV_STATUS Only returns GEVLIB_OK

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 73

Utility Functions
The following functions are provided as useful utility functions for manipulating image formats used to
define image buffer storage.

GevGetBayerAsRGBPixelType
UINT32 GevGetBayerAsRGBPixelType(UINT32 pixelType);

Description

Returns a color (RGB) pixel type corresponding to the output of a simple Bayer to color conversion
function. Color component bit depth are preserved. It is intended to assist in allocating space for a
converted image and to provide an output format for the Bayer conversion function to use.
(If the input pixel type is not recognized as Bayer, then fmtRGBA8Packed will be returned.)

Parameters

pixelType GigE Vision pixel data format (packed).

Return Value

UINT32 The RGB pixel format corresponding to the input format when it is converted.
(e.g. fmtBayerBG12 becomes fmtRGB12Packed)

GevGetConvertedPixelType
UINT32 GevGetConvertedPixelType(int convertBayer, UINT32 pixelType);

Description

Returns the converted pixel type that will result from the default processing applied during the
acquisition process. If convertBayer is 1 (True), then the output converted pixel type for both Bayer
and PackedBayer formats will be a corresponding RGB format. If convertBayer is 0 (False), then the
output converted pixel type for both Bayer and PackedBayer formats will be the Bayer format itself.
Packed Monochrome formats will output their unpacked equivalent.

(This is a combination of the previous functions GevGetUnpackedPixelType and
GevGetBayerAsRGBPixelType)
Parameters

pixelType GigE Vision pixel data format (packed).

Return Value

UINT32 The converted pixel type that the acquisition process will supply.
(e.g. fmtBayerBG12Packed becomes fmtBayerBG12)

GevGetPixelComponentCount
UINT32 GevGetPixelComponetCount(UINT32 pixelType);

Description

Returns the number of color components in a pixel for the input raw (GigE Vision) image format. It is
intended for simplifying display and storage functions. (Monochrome images have a single color
component).

Parameters

pixelType GigE Vision pixel data format.

Return Value

UINT32 The number of components in a pixel.

74 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevGetPixelDepthInBits
UINT32 GevGetPixelDepthInBits(UINT32 pixelType);

Description

Returns the number of bits taken up by a single color component in a pixel for the input raw (GigE
Vision) image format. It is intended for simplifying display and LUT functions.
Note: YUV composite color pixel formats need to be converted to an RGB equivalent. The various
Y/U/V packed combinations may be (incorrectly) treated as 8 bit data.

Parameters

pixelType GigE Vision pixel data format.

Return Value

UINT32 The depth of the pixel in bits

GevGetPixelSizeInBytes
UINT32 GevGetPixelSizeInBytes(UINT32 pixelType);

Description

Returns the number of bytes taken up by the input raw (GigE Vision) image format.

Parameters

pixelType GigE Vision pixel data format.

Return Value

UINT32 Size of the pixel in bytes

GevGetUnpackedPixelType
UINT32 GevGetUnpackedPixelType(UINT32 pixelType);

Description

Returns the pixel format that would result following a simple unpacking of a packed input pixel format
by the default processing during frame acquisition.
(If the input pixel type is not packed, it is returned as the unpacked format).

Parameters

pixelType GigE Vision pixel data format (packed).

Return Value

UINT32 The pixel format corresponding to the input format when it is unpacked.
(e.g. fmtMono12Packed becomes fmtMono12)

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 75

GevIsPixelTypeMono, GevIsPixelTypeRGB, GevIsPixelTypePacked,
GevIsPixelTypeBayer
BOOL GevIsPixelTypeMono(UINT32 pixelType);
BOOL GevIsPixelTypeRGB(UINT32 pixelType);
BOOL GevIsPixelTypePacked(UINT32 pixelType);
BOOL GevIsPixelTypeBayer(UINT32 pixelType);

Description

Returns true/false for the various image pixel types (mono, RGB, packed, Bayer).

Parameters

pixelType GigE Vision pixel data format.

Return Value

BOOL True/False (for the condition queried).

GevTranslateRawPixelFormat

GEV_STATUS GevTranslateRawPixelFormat (UINT32 rawFormat, PUINT32 translatedFormat,

 PUINT32 bitDepth, PUINT32 order)

Description

Translates an input raw (GigE Vision) image format into information useful during image display.

Parameters

rawFormat GigE Vision pixel data format.
translatedFormat Simplified version of the format. Possible values are:

GEV_PIXEL_FORMAT_MONO, GEV_PIXEL_FORMAT_MONO_PACKED,
GEV_PIXEL_FORMAT_RGB, GEV_PIXEL_FORMAT_RGB_PACKED,
GEV_PIXEL_FORMAT_BAYER, GEV_PIXEL_FORMAT_YUV,
GEV_PIXEL_FORMAT_RGB_PLANAR

bitDepth Number of bits in a mono pixel or in each color channel..
order Color channel order. Possible values are:

GEV_PIXEL_ORDER_NONE (for MONO and YUV)
GEV_PIXEL_ORDER_RGB,
GEV_PIXEL_ORDER_BGR,
GEV_PIXEL_ORDER_GRB,,
GEV_PIXEL_ORDER_GBR,
GEV_PIXEL_ORDER_RGB10V1 (a custom 10-bit RGB)
GEV_PIXEL_ORDER_RGB10V2 (a custom 10-bit RGB)

Return Value

BOOL True/False (for the condition queried).

76 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

Operating System Independence Wrapper
The OS Independence wrapper provides a compatibility layer allowing GigE-V Framework API to be
(potentially) used in multiple operating system environments. It uses functions from the WIN32
compatibility library (libCorW32) provided with the installation.

Function Overview
Function Description

BOOL _CreateEvent (_EVENT *pEvent);
BOOL _DestroyEvent (_EVENT *pEvent);
BOOL _WaitForEvent (_EVENT *pEvent, UINT32 timeout);
BOOL _ClearEvent (_EVENT *pEvent);
BOOL _SetEvent (_EVENT *pEvent);

Event objects:
Required functions for
manual reset event
signaling

BOOL _InitCriticalSection (_CRITICAL_SECTION *pCSection);
BOOL _ReleaseCriticalSection (_CRITICAL_SECTION *pCSection);
BOOL _EnterCriticalSection (_CRITICAL_SECTION *pCSection);
BOOL _LeaveCriticalSection (_CRITICAL_SECTION *pCSection);

Critical Section objects
required functions

BOOL _CreateThread (unsigned _stdcall fct(void *), void *context,
int priority, _THREAD *pThread);
BOOL _WaitForThread (_THREAD *pThread, UINT32 timeout);

Thread objects required
functions:

GigE-V Framework for Linux 32/64-bitAppendix A: Common Package Management methods in Linux • 77

Appendix A: Common
Package Management
methods in Linux
As part of installing the GigE-V Framework for Linux, other software packages are either useful or
required for proper functioning of the API. Software packages are available for distribution in different
file formats. The most common ones are:

• “.deb” files: Debian package files
• “.rpm” files: RedHat Package Manger files
• “.tgz”: Compressed tar archive files

Different Linux distributions use different programs for managing (searching, installing, updating)
these packages. Distributions usually have both a graphical program used for installing packages as
well as a command-line program for installing packages.

Software Package Management Tools

Linux Distribution (Family) GUI-based Tool Command Line Tool
Ubuntu Ubuntu Software Center apt
Debian Synpatic (among others) apt
Suse/openSuse Yast zypper
Red Hat
(RHEL/Fedora/CentOS/Scientific)

“Add / Remove Software” menu
item
gnome-packagekit-installer
yumex

yum (for older releases)
dnf (for recent releases)

Other See distro documentation See distro documentation

The common tasks provided by package managers are :

1) Managing (Install/Remove) Packages
This is the most frequently used set of tasks performed by a package manager. The functions
include :

• Installing package from a repository
• Installing package from a file obtained elsewhere than a repository
• Updating an installed package
• Uninstalling a package.

2) Searching for Packages

The known repositories can be searched for packages by name. Descriptive information about
the packages can be displayed and the list of packages actually installed can be found.

3) Updating Package Repository Information
Each distribution has its own default list of repositories plus lists of extra repositories that can
be added (by URL) should they be required in order to locate a package. Updating the
repository information involves the following functions :

• Updating package lists with the latest information
• Listing known repositories
• Adding repositories to the known list
• Removing repositories from the known list

78 • Appendix A: Common Package Management methods in LinuxGigE-V Framework for Linux 32/64-bit

CLI Package Management Command Examples
(by Distribution)
The following is a summary of the commands (and options) that can be used on some, more popular,
Linux distributions for finding and installing the packages used by the GigE-V Framework for Linux.

Task apt (.deb)

(Ubuntu/Debian
family)

yum (.rpm)
(older RedHat
family)

dnf (.rpm)
(newer RedHat
family)

zipper (.rpm)
(Suse/openSuse
family)

Update package list apt-get update yum check-update dnf check-update zypper refresh

install from repository apt-get install pkgname yum install pkgname dnf install pkgname zypper install
pkgname

update installed package apt-get install pkgname yum update pkgname dnf update pkgname zypper update –t
package pkgname

remove package apt-get remove pkgname yum erase pkgname dnf erase pkgname zypper remove
pkgname

show package info apt-cache show pkgname yum info pkgname dnf info pkgname zypper info pkgname

list installed packages dpkg -l rpm -qa rpm -qa zypper search -is

search for package
by name :
by pattern :

apt-cache search
pkgname
apt-cache search pattern

yum list pkgname
yum search pattern

dnf list pkgname
dnf search pattern

zypper search
pkgname
zypper search –t
pattern pattern

list known repos cat /etc/apt/sources.list yum reposlist dnf repolist zypper repos

add repository Add URL to file
/etc/apt/sources.list

Add *.repo files to
/etc/yum.repos.d

Add *.repo files to
/etc/yum.repos.d
And/or edit
/etc/dnf/dnf.conf

zypper addrepo URL
reponame

remove repository Remove URL from file
/etc/apt/sources.list

Remove *.repo files
from
/etc/yum.repos.d

Remove *.repo files
from
/etc/yum.repos.d
And/or edit
/etc/dnf/dnf.conf

zypper removerepo
reponame

Usually, if the command line program cannot find the desired package, the graphical program can be
used to search using regular expression patterns to find candidates and the package information /
descriptions returned can be used to determine which package to install.
Note: Different Linux distributions sometimes call the same packages by different, but similar, names.
Some attention is required in order to ensure that the proper package is found and installed.

GigE-V Framework for Linux 32/64-bitAppendix A: Common Package Management methods in Linux • 79

Required Packages
The following table contains a list of packages needed. In some cases the names are different or need
to be searched for using a pattern due to distribution-dependent naming conventions.

Purpose Distribution Package Name
S/W Development
(Compilers/Linkers etc….)

Ubuntu / Debian gcc (top level package for C
compiler)
and
g++ (top level package for C++
compilation)

 Suse/openSuse gcc
gcc-c++

 Fedora/RHEL/CentOs gcc
gcc-c++

Packet capture (for PF_PACKET
interface support)

Ubuntu/Debian libpcap0.8

 Suse/openSuse libpcap1
 Fedora/RHEL/CentOs Search for libcap*

Load “.glade” UI definition files at
application runtime

Ubuntu/Debian libglade2-0
libglade2-dev

 Suse/openSuse libglade-2_0-0
libglade2-devel

 Fedora/RHEL/CentOs Search for libglade2*

Compile and Link Demos using X11
for Image display

Ubuntu/Debian libx11-dev
libxext-dev

 Suse/openSuse xorg-x11-libX11-devel
xorg-x11-libXext

 Fedora/RHEL/CentOs Search for libXext*
Search for libX11-devel (may need
rpmfind for this).

Capabilities setting for
CAP_NET_RAW and
CAP_SYS_NICE support

Ubuntu / Debian libcap2 or
libcap-ng0

 Suse/openSuse libcap2 or
libcap-ng0 and
libcap-progs

 Fedora/RHEL/CentOs Search for libcap*
Compile and link GigE Vision Device
Status tool

Ubuntu / Debian libgtk-3-dev
Suse/openSuse gtk2-devel
Fedora/RHEL/CentOs gtk2-devel

TIFF file operations Ubuntu / Debian libtiff-dev
Suse/openSuse libtiff-devel
Fedora/RHEL/CentOs libtiff-devel

80 • Appendix B: Helper Functions GigE-V Framework for Linux 32/64-bit

Appendix B: Helper Functions
The following functions are provided in a common (shared) directory (in
$HOME/DALSA/GigeV/examples/common) for use by example programs and are available
for end-user applications. They are provided as “helper” functions and are used for
interacting with Linux-specific aspects of the system; as such they are not part of the GigE-
Vision Framework API itself.

IsGevPixelTypeX11Displayable
int IsGevPixelTypeX11Displayable(UINT32 pixelType);

Description

Returns true/false (1/0) if the input GigE Vision pixel type is displayable by the X11 Utility function
provided with the example programs.

Parameters

pixelType GigE Vision pixel data format.

Return Value

int True/False (1/0) that X11 display functions support the specified format.

GetX11DisplayablePixelFormat
UNIT32 GetX11DisplayablePixelFormat (int convertBayer, UINT32 rawGevPixelFormat,

 UINT32 *convertedGevPixelFormat,
 UINT32 displayableSaperaPixelFormat);

Description

Returns the converted pixel type that allows the input GigE Vision pixel type to be displayed after a
conversion has been applied to it. If convertBayer is 1 (True), any Bayer input formats return a color
pixel format.
Currently, all Bayer formats converted for display use format fmtBayerBGRA8 due to a legacy
implementation in the display helper functions.

Parameters

rawGevPixelFormat Input GigE Vision pixel data format.
convertedGevPixelFormat Returned GigE Vision pixel format reflecting any conversion performed

during frame acquisition (e.g. unpacking, etc…).
displayableSaperaPixelFormat Returned pixel format displayable by the X11 utilities shared with our

SaperaLT API.

Return Value

UINT32 Always 0.

GigE-V Framework for Linux 32/64-bit Appendix B: Helper Functions • 81

CreateDisplayWindow
X_VIEW_HANDLE CreateDisplayWindow (const char *title, int visible, int height,

 int width, int depth, int sapera_format,
 int use_shared_memory);

Description

Creates an X11 display window.

Parameters

title Window title
visible
height Window height, in pixels
width Window width, in pixels
depth Pixel depth, in bits
use_shared_memory

Return Value

X_VIEW_HANDLE Handle to window

DestroyDisplayWindow
void DestroyDisplayWindow (X_VIEW_HANDLE xhandle);

Description

Destroys all resources allocated to an X11 display window.

Parameters

xhandle Handle to window

Return Value

void

Display_Image
int Display_Image (X_VIEW_HANDLE xhandle, int depth, int width, int height,

 void *image);

Description

Creates an X11 display window.

Parameters

xhandle Handle to window
depth Pixel depth, in bits
width Window width, in pixels
height Window height, in pixels
void pointer to image

Return Value

int Returns non-zero value on success.

82 • Appendix B: Helper Functions GigE-V Framework for Linux 32/64-bit

ConvertGevImageToX11Format
void ConvertGevImageToX11Format (int w, int h, int gev_depth, int gev_format,

 void *gev_input_data, int x11_depth,
 int x11_format, void *x11_output_data);

Description

Creates an X11 display window.

Parameters

w Window width, in pixels
h Window height, in pixels
depth Gev image pixel depth, in bits
gev_format Gev image format. Possible values are:

fmtBayerBG10Packed
fmtBayerGB10Packed
fmtBayerGR10Packed
fmt

*gev_input_data Pointer to gev image data
x11_depth X11 image pixel depth, in bits
x11_format X11 image format
*x11_output_data Pointer to memory location for X11 output image

Return Value

int Returns non-zero value on success.

Read_TIFF_ToGevImage
int Read_TIFF_ToGevImage (char *filename, uint32_t *width, uint32_t *height,

 int pixel_format, int size, void *imageData);

Description

Reads a TIFF image from file and converts it to a GevImage. Note, reading 10/12/14/16-bit formats
into 8-bit formats is not supported.

Parameters

*filename Name of TIFF file
*width Pointer to memory to hold width, in pixels, of TIFF file image to read
*height Pointer to memory to hold height, in pixels, of TIFF file image to read
pixel_format Output image pixel format
size Size of buffer to hold image read, in bytes
*imageData Pointer to memory to hold output GevImage

Return Value

int Returns non-zero value on success. Possible error values include:
GEVLIB_ERRPR_NULL_PTR: Data pointer is NULL.
GEVLIB_ERROR_INVALID_PIXEL_FORMAT: The specified pixel format is not supported.

GigE-V Framework for Linux 32/64-bit Appendix B: Helper Functions • 83

Write_GevImage_ToTIFF
int Write_GevImage_ToTIFF (char *filename, uint32_t width, uint32_t height, int

pixel_format, void *imageData);

Description

Writes the input image to the specified TIFF file.

Parameters

*filename Name of file to write
width Width, in pixels, of image to write.
height Height, in pixels, Pointer to memory to hold height of TIFF file image to read
pixel_format Image data pixel format
*imageData Pointer to memory to hold output TIFF image

Return Value

int When successful, returns the number of bytes written to the file.
Possible error values include:
GEVLIB_ERROR_NULL_PTR: Data pointer is NULL.
GEVLIB_ERROR_INVALID_PIXEL_FORMAT: The specified pixel format is not
supported.

ConvertBayerToRGB
GEV_STATUS ConvertBayerToRGB (int convAlgorithm, UINT32 h, UINT32 w, UINT32

inFormat, void *inImage, UINT32 outFormat, void
*outImage);

Description

Converts a Bayer image to an RGB image. Supported conversions are:
• 8-bit Bayer to 8-bit RGB
• 16-bit Bayer to 10/12/14/16-bit RGB
• 16-bit Bayer to 8-bit RGB (typically for display purposes)

Parameters

convAlgorithm Conversion algorithm. Currently, only BAYER_CONVERSION_2X2 is supported.
h Height, in pixels, of Bayer image to convert.
w Width, in pixels, of Bayer image to convert.
inFormat Bayer format of image to convert. Refer to
outFormat Output image RGB format
*outImage Pointer to memory to hold output RGB image

Return Value

Possible return values include:
GEVLIB_ERROR_PARAMETER_INVALID: Unsupported input format or algorithm.

84 • Appendix C: Feature Access Through Static Registers GigE-V Framework for Linux 32/64-bit

Appendix C: Feature Access
Through Static Registers
A set of functions is provided to directly access camera registers. Standard features are implemented
as simple registers using a static device-specific table of GEV_REGISTER structure definitions.

Note : These function operate outside of the GenICam XML based feature access functions (see above)
and require manual configuration of the static register table in order to work. They remain in the API
for support of legacy applications, legacy cameras and memory constrained embedded environments.

Member Function Overview
Function Description

GevGetCameraRegisters Get the Camera Registers
GevSetCameraRegInfo Set the Camera Register Info
GevInitCameraRegisters Initialize Camera Registers
GevGetNumberOfRegisters Get the number of Camera register entries configured for the

camera
GevReadRegisterByName Read the contents of a Camera Register by name.
GevWriteRegisterByName Write the contents of a Camera Register byname.
GevGetRegisterNameByIndex Get the name of a Camera register entry based on its index
GevGetRegisterByName Get a Camera Register structure by name
GevGetRegisterPtrByName Get a Pointer to a Camera Register structure by name
GevGetRegisterByIndex Get a Camera Register structure by index
GevGetRegisterPtrByIndex Get a Pointer to a Camera Register structure by index.
GevRegisterRead Read Register (a generic register access function)
GevRegisterWrite Write Register (a generic register access function)
GevRegisterWriteNoWait Write Register without waiting for an ack (a generic register

access function)
GevRegisterWriteArray Write multiple values to a memory area.
GevRegisterReadArray Read multiple values from a memory area.
GevRegisterWriteInt Write an integer to a register (an integer register access

function)
GevRegisterReadInt Read an integer from a register (an integer register access

function)
GevRegisterWriteFloat Write a float to a register (a float register access function)
GevRegisterReadFloat Read a float from a register (a float register access function)

GigE-V Framework for Linux 32/64-bit Appendix C: Feature Access Through Static Registers • 85

Member Function Descriptions
The following functions are members of the Camera Register / Feature Access group. They operate on
the GEV_REGISTER data structure.

For informational purposed, this data structure is defined as:

typedef struct
{
 char featureName[FEATURE_NAME_MAX_SIZE]; // String name of feature for this register.
 UINT32 address; // Address for accessing feature in camera
 // NOREF_ADDR if not in camera).
 RegAccess accessMode; // RO, WO, RW access allowed.
 BOOL32 available; // True if feature is available (in camera or not)
 // False is not available.
 RegType type; // String, Float, Integer, Enum, Bit, Area, Fixed …
 UINT32 regSize; // Size of storage for register
 // (or register set / area).
 UINT32 regStride; // Increment between register items accessed via selector
 UINT32 minSelector; // Minimum value for selector
 // (corresponds to base address).
 UINT32 maxSelector; // Maximum value for selector.
 GENIREG_VALUE. value; // Current value
 // (storage for features not backed by a register).
 GENIREG_VALUE minValue; // Minimum allowable value.
 GENIREG_VALUE maxValue; // Maximum allowable value.
 UINT32 readMask; // AND Mask for read (integers only)
 UINT32 writeMask; // AND Mask for write (integers only)
 PGENICAM_FEATURE feature; // Pointer to feature in feature table (future).
 char selectorName[FEATURE_NAME_MAX_SIZE]; // String name of register-based selector
 // for feature.
 char indexName[FEATURE_NAME_MAX_SIZE]; // String name of index (second selector)
 // for feature.
} GEV_REGISTER, *PGEV_REGISTER;

Some functions operate on the DALSA_GENICAM_GIGE_REGS data structure (refer to the gevapi.h file
in the DALSA/GigeV/include directory) which is a set of GEV_REGISTER structures organized along the
lines of the GenICam Standard Features Naming Convention (SFNC) version 1.2.1. The SFNC
documentation is available at http://www.emva.org/standards-technology/genicam/.

Note: The GEV_REGISTER structure and its access methods are a work-in-progress. While the
functions in the API are expected to remain the same, the underlying setup of the GEV_REGISTER
structures used by a device will change.

http://www.emva.org/standards-technology/genicam/

86 • Appendix C: Feature Access Through Static Registers GigE-V Framework for Linux 32/64-bit

GevGetCameraRegisters
GEV_STATUS GevGetCameraRegisters (GEV_CAMERA_HANDLE handle,

 DALSA_GENICAM_GIGE_REGS *camera_registers,
 int size);

Description

Gets the Camera Registers stored with the camera’s handle.

Parameters

handle GEV_CAMERA_HANDLE identifying the camera to be accessed.
*camera_registers Pointer to a structure, allocated by the application, to contain the camera

registers.
size Size of the camera registers structure, in bytes.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_NULL_PTR

GevGetNumberOfRegisters
GEV_STATUS GevGetNumberOfRegisters(GEV_CAMERA_HANDLE handle, UINT32 *pNumReg);

Description

Gets the number of Camera register entries configured for the camera.
Returns the number of valid GEV_REGISTER structures defined in the camera handle.

Parameters

handle GEV_CAMERA_HANDLE identifying the camera whose registers are to be accessed.
pNumReg Pointer to storage to return the number of valid GEV_REGISTER structures in.

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_NULL_PTR

GigE-V Framework for Linux 32/64-bit Appendix C: Feature Access Through Static Registers • 87

GevGetRegisterByName
GEV_STATUS GevGetRegisterByName (GEV_CAMERA_HANDLE handle, char *name,

 GEV_REGISTER *pReg);

Description

Gets a Camera Register structure by name.
This function finds and returns a GEV_REGISTER structure from the camera using the name of the
GEV_REGISTER structure. If the name is not matched in the list of registers, an error is returned.
Note: The name is case-sensitive.

Parameters

handle GEV_CAMERA_HANDLE identifying the camera whose registers are to be accessed.
name The name to use to search for a GEV_REGISTER structure for the camera.
pReg Pointer to a GEV_REGISTER data structure, allocated by the application, to contain

the GEV_REGISTER data copied from the internal camera configuration data,

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_NULL_PTR

GevGetRegisterByIndex
GEV_STATUS GevGetRegisterByIndex (GEV_CAMERA_HANDLE handle, UINT32 index,

 GEV_REGISTER *pReg);

Description

Gets a Camera Register structure by index.
This function finds and returns a GEV_REGISTER structure from the camera using the index of the
GEV_REGISTER structure.

Parameters

handle GEV_CAMERA_HANDLE identifying the camera whose registers are to be accessed.
index Index to use to access the available GEV_REGISTER structures for the camera.
pReg Pointer to a GEV_REGISTER data structure, allocated by the application, to contain

the GEV_REGISTER data copied from the internal camera configuration data,

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_NULL_PTR

88 • Appendix C: Feature Access Through Static Registers GigE-V Framework for Linux 32/64-bit

GevGetRegisterNameByIndex
GEV_STATUS GevGetRegisterNameByIndex (GEV_CAMERA_HANDLE handle, UINT32 index,

 int size, char *name)

Description

Gets the name of a Camera register entry based on its index.
Returns the name of a GEV_REGISTER structure defined in the camera handle based on the input
index.

Parameters

handle GEV_CAMERA_HANDLE identifying the camera whose registers are to be accessed.
index Index to use to access the available GEV_REGISTER structures for the camera.
size Number of bytes available to store the name (should be FEATURE_NAME_MAX_SIZE

(48)).
name Pointer to storage to return the name of the register structure in.

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_NULL_PTR

GevGetRegisterPtrByIndex
GEV_STATUS GevGetRegisterPtrByIndex (GEV_CAMERA_HANDLE handle, UINT32 index,

 GEV_REGISTER **pReg)

Description

Gets a pointer to a Camera Register structure by index.
This function finds and returns a pointer to a GEV_REGISTER structure from the camera using the
index of the GEV_REGISTER structure.

Parameters

handle GEV_CAMERA_HANDLE identifying the camera whose registers are to be accessed.
index Index to use to access the available GEV_REGISTER structures for the camera.
pReg Pointer to hold a pointer to a GEV_REGISTER data structure, obtained from the

internal camera configuration data,

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_NULL_PTR

GigE-V Framework for Linux 32/64-bit Appendix C: Feature Access Through Static Registers • 89

GevGetRegisterPtrByName
GEV_STATUS GevGetRegisterPtrByName (GEV_CAMERA_HANDLE handle, char *name,

 GEV_REGISTER **pReg)

Description

Gets a pointer to a Camera Register structure by name.
This function finds and returns a pointer to a GEV_REGISTER structure from the camera using the
name of the GEV_REGISTER structure. If the name is not matched in the list of registers a NULL
pointer is returned.
Note: The name is case sensitive.

Parameters

handle GEV_CAMERA_HANDLE identifying the camera whose registers are to be accessed.
name Name to use to search for a GEV_REGISTER structure for the camera.
pReg Pointer to hold a pointer to a GEV_REGISTER data structure, obtained from the

internal camera configuration data,

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_NULL_PTR

GevInitCameraRegisters
GEV_STATUS GevInitCameraRegisters(GEV_CAMERA_HANDLE handle);

Description

Initializes Camera Registers.
For supported Teledyne DALSA cameras, this is automatically done when the camera is opened. Users
generating their own camera register structure should see ‘cameraregdata.c’ in order to have this
function set up their registers automatically.

Parameters

handle GEV_CAMERA_HANDLE identifying the camera whose registers are to be initialized.

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_SOFTWARE (camera registers structure is not properly set up)
GEVLIB_ERROR_NULL_PTR

90 • Appendix C: Feature Access Through Static Registers GigE-V Framework for Linux 32/64-bit

GevReadRegisterByName
GEV_STATUS GevReadRegisterByName (GEV_CAMERA_HANDLE handle, char *name, int selector,

 UINT32 size, void *data);

Description

Reads a camera register, identified by name. A helper function using the pattern
GevGetRegisterPtrByName and GevRegisterRead.

Parameters

handle GEV_CAMERA_HANDLE identifying the camera.
name Name to use to search for a GEV_REGISTER structure for the camera.
selector Index into a group of registers providing the same functionality. These register groups

need to be set up properly in the GEV_REGISTER structure.
This is generally 0 as the ‘array’ based functions can be used to access multiple
contiguous locations.

size Size of the data to be read.
*data Pointer to a location, allocated by the caller, to receive the data to be read.

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_RESOURCE_NOT_ENABLED
 (GEV_REGISTER struct is for a register that is not
available)
GEVLIB_ERROR_NOT_IMPLEMENTED (GEV_REGISTER struct is for a Write-
Only register)
GEVLIB_ERROR_SOFTWARE (GEV_REGISTER struct defines an unsupported
register type)

GigE-V Framework for Linux 32/64-bit Appendix C: Feature Access Through Static Registers • 91

GevRegisterRead
GEV_STATUS GevRegisterRead (GEV_CAMERA_HANDLE handle, GEV_REGISTER *pReg,

 int selector, UINT32 size, void *data);

Description

Reads the specified register (a generic register access function)

Parameters

handle GEV_CAMERA_HANDLE identifying the camera.
*pReg Pointer to the GEV_REGISTER structure for the register to be accessed.
selector Index into a group of registers providing the same functionality. These register groups

need to be set up properly in the GEV_REGISTER structure.
This is generally 0 as the ‘array’ based functions can be used to access multiple
contiguous locations.

size Size of the data to be read.
*data Pointer to a location, allocated by the caller, to receive the data to be read.

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_RESOURCE_NOT_ENABLED
 (GEV_REGISTER struct is for a register that is not
available)
GEVLIB_ERROR_NOT_IMPLEMENTED (GEV_REGISTER struct is for a Write-
Only register)
GEVLIB_ERROR_SOFTWARE (GEV_REGISTER struct defines an unsupported
register type)

92 • Appendix C: Feature Access Through Static Registers GigE-V Framework for Linux 32/64-bit

GevRegisterReadArray
GEV_STATUS GevRegisterReadArray (GEV_CAMERA_HANDLE handle, GEV_REGISTER *pReg,

 int selector, UINT32 array_offset,
 UINT32 num_entries, void *data);

Description

Reads an array of 32-bit values from a memory area on the camera.

Parameters

handle GEV_CAMERA_HANDLE identifying the camera.
*pReg Pointer to the GEV_REGISTER structure for the register to be accessed.
selector Index into a group of registers providing the same functionality. These register groups

need to be set up properly in the GEV_REGISTER structure. This is generally 0 for
arrays

array_offset Start offset into the array.
num_entries Number of entries to be read from the array, starting at the start offset.
*data Pointer to a location allocated by the caller, to receive the data read from the array.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_RESOURCE_NOT_ENABLED (GEV_REGISTER struct is for a register
that is not available)
GEVLIB_ERROR_NOT_IMPLEMENTED (GEV_REGISTER struct is for a Write-Only
register)
GEVLIB_ERROR_SOFTWARE (GEV_REGISTER struct does not define an array

GigE-V Framework for Linux 32/64-bit Appendix C: Feature Access Through Static Registers • 93

GevRegisterReadFloat
GEV_STATUS GevRegisterReadFloat (GEV_CAMERA_HANDLE handle, GEV_REGISTER *pReg,

 int selector, float *value);

Description

Reads a floating point value from a register (a float register access function).

Parameters

handle GEV_CAMERA_HANDLE identifying the camera.
*pReg Pointer to the GEV_REGISTER structure for the register to be accessed.
selector Index into a group of registers providing the same functionality. These register groups

need to be set up properly in the GEV_REGISTER structure.
This is generally 0 as the ‘array’ based functions can be used to access multiple
contiguous locations.

value Pointer to a location to receive the floating point value from the camera.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID (GEV_REGISTER struct is not for an Integer
register)
GEVLIB_ERROR_ARG_INVALID (GEV_REGISTER definition is invalid)
GEVLIB_ERROR_RESOURCE_NOT_ENABLED (GEV_REGISTER struct is for a register
that is not available)
GEVLIB_ERROR_NOT_IMPLEMENTED (GEV_REGISTER struct is for a Read-Only
register)
GEVLIB_ERROR_SOFTWARE (GEV_REGISTER struct defines an unsupported register
type)

94 • Appendix C: Feature Access Through Static Registers GigE-V Framework for Linux 32/64-bit

GevRegisterReadInt
GEV_STATUS GevRegisterReadInt (GEV_CAMERA_HANDLE handle, GEV_REGISTER *pReg,

 int selector, UINT32 *value);

Description

Reads an integer value from a register (an integer register access function)

Parameters

handle GEV_CAMERA_HANDLE identifying the camera.
*pReg Pointer to the GEV_REGISTER structure for the register to be accessed.
selector Index into a group of registers providing the same functionality. These register groups

need to be set up properly in the GEV_REGISTER structure.
This is generally 0 as the ‘array’ based functions can be used to access multiple
contiguous locations.

value Pointer to a location to receive the integer value from the camera.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID (GEV_REGISTER struct is not for an Integer
register)
GEVLIB_ERROR_ARG_INVALID (GEV_REGISTER definition is invalid)
GEVLIB_ERROR_RESOURCE_NOT_ENABLED (GEV_REGISTER struct is for a register
that is not available)
GEVLIB_ERROR_NOT_IMPLEMENTED (GEV_REGISTER struct is for a Read-Only
register)
GEVLIB_ERROR_SOFTWARE (GEV_REGISTER struct defines an unsupported register
type)

GigE-V Framework for Linux 32/64-bit Appendix C: Feature Access Through Static Registers • 95

GevRegisterWrite
GEV_STATUS GevRegisterWrite (GEV_CAMERA_HANDLE handle, GEV_REGISTER *pReg,

 int selector, UINT32 size, void *data);

Description

Writes a value to a specified register (a generic register access function)

Parameters

handle GEV_CAMERA_HANDLE identifying the camera.
*pReg Pointer to the GEV_REGISTER structure for the register to be accessed.
selector Index into a group of registers providing the same functionality. These register groups

need to be set up properly in the GEV_REGISTER structure.
This is generally 0 as the ‘array’ based functions can be used to access multiple
contiguous locations.

size Size of the data being written.
*data Pointer to the data to be written.

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_RESOURCE_NOT_ENABLED
 (GEV_REGISTER struct is for a register that is not
available)
GEVLIB_ERROR_NOT_IMPLEMENTED (GEV_REGISTER struct is for a Read-Only
register)
GEVLIB_ERROR_SOFTWARE (GEV_REGISTER struct defines an unsupported
register type)

96 • Appendix C: Feature Access Through Static Registers GigE-V Framework for Linux 32/64-bit

GevRegisterWriteArray
GEV_STATUS GevRegisterWriteArray (GEV_CAMERA_HANDLE handle, GEV_REGISTER *pReg,

 int selector, UINT32 array_offset,
 UINT32 num_entries, void *data);

Description
Writes an array of 32-bit values to a memory area on the camera.

Parameters
handle GEV_CAMERA_HANDLE identifying the camera.

*pReg Pointer to the GEV_REGISTER structure for the register to be accessed.

selector Index into a group of registers providing the same functionality. These register groups
need to be set up properly in the GEV_REGISTER structure. This is generally 0.

array_offset Start offset into the array.

num_entries Number of entries to be written starting at the start offset.
*data Pointer to the data to be written.

Return Value
GEV_STATUS Possible values are :

GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_RESOURCE_NOT_ENABLED (GEV_REGISTER struct is for a register
that is not available)
GEVLIB_ERROR_NOT_IMPLEMENTED (GEV_REGISTER struct is for a Read-Only
register)
GEVLIB_ERROR_SOFTWARE (GEV_REGISTER struct does not define an array

GigE-V Framework for Linux 32/64-bit Appendix C: Feature Access Through Static Registers • 97

GevRegisterWriteFloat
GEV_STATUS GevRegisterWriteFloat (GEV_CAMERA_HANDLE handle, GEV_REGISTER *pReg,

 int selector, float value);

Description

Writes a floating point value to a register (a float register access function)

Parameters

handle GEV_CAMERA_HANDLE identifying the camera.
*pReg Pointer to the GEV_REGISTER structure for the register to be accessed.
selector Index into a group of registers providing the same functionality. These register groups

need to be set up properly in the GEV_REGISTER structure.
This is generally 0 as the ‘array’ based functions can be used to access multiple
contiguous locations.

value Value to be written to the camera.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID (GEV_REGISTER struct is not for an Integer
register)
GEVLIB_ERROR_ARG_INVALID (GEV_REGISTER definition is invalid)
GEVLIB_ERROR_RESOURCE_NOT_ENABLED (GEV_REGISTER struct is for a register
that is not available)
GEVLIB_ERROR_NOT_IMPLEMENTED (GEV_REGISTER struct is for a Read-Only
register)
GEVLIB_ERROR_SOFTWARE (GEV_REGISTER struct defines an unsupported register
type)

98 • Appendix C: Feature Access Through Static Registers GigE-V Framework for Linux 32/64-bit

GevRegisterWriteInt
GEV_STATUS GevRegisterWriteInt (GEV_CAMERA_HANDLE handle, GEV_REGISTER *pReg,

 int selector, UINT32 value);

Description

Writes an integer value to a register (an integer register access function)

Parameters

handle identifying the camera.
*pReg Pointer to the GEV_REGISTER structure for the register to be accessed.
selector Index into a group of registers providing the same functionality. These register groups

need to be set up properly in the GEV_REGISTER structure.
This is generally 0 as the ‘array’ based functions can be used to access multiple
contiguous locations.

value Value to write.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID (GEV_REGISTER struct is not for an Integer
register)
GEVLIB_ERROR_ARG_INVALID (GEV_REGISTER definition is invalid)
GEVLIB_ERROR_RESOURCE_NOT_ENABLED (GEV_REGISTER struct is for a register
that is not available)
GEVLIB_ERROR_NOT_IMPLEMENTED (GEV_REGISTER struct is for a Read-Only
register)
GEVLIB_ERROR_SOFTWARE (GEV_REGISTER struct defines an unsupported register
type)

GigE-V Framework for Linux 32/64-bit Appendix C: Feature Access Through Static Registers • 99

GevRegisterWriteNoWait
GEV_STATUS GevRegisterWriteNoWait (GEV_CAMERA_HANDLE handle, GEV_REGISTER *pReg,

 int selector, UINT32 size, void *data);

Description

Writes a value to a register without waiting for an acknowledgment that the write succeeded. (A
generic register access function).
Note: Writing without waiting for an ack will queue writes in the camera. Eventually the caller should
perform a write with an ack in order to make sure all of the queued writes complete before the queue
overflows. The number of writes that can be safely queued is dependent on the camera itself. For
Teledyne DALSA cameras, this is typically at least 16 write,

Parameters

handle GEV_CAMERA_HANDLE identifying the camera.
*pReg Pointer to the GEV_REGISTER structure for the register to be accessed.
selector Index into a group of registers providing the same functionality. These register groups

need to be set up properly in the GEV_REGISTER structure.
This is generally 0 as the ‘array’ based functions can be used to access multiple
contiguous locations.

size Size of the data being written.
*data Pointer to the data being written.

Return Value

GEV_STATUS Possible values are
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE

GEVLIB_ERROR_RESOURCE_NOT_ENABLED
(GEV_REGISTER struct is for a register that is not available)

GEVLIB_ERROR_NOT_IMPLEMENTED
(GEV_REGISTER struct is for a Read-Only register)

GEVLIB_ERROR_SOFTWARE
(GEV_REGISTER struct defines an unsupported register type)

100 • Appendix C: Feature Access Through Static Registers GigE-V Framework for Linux 32/64-bit

GevSetCameraRegInfo
GEV_STATUS GevSetCameraRegInfo (GEV_CAMERA_HANDLE handle, cameraType type,

 BOOL fSupportedDalsaCamera,
 DALSA_GENICAM_GIGE_REGS *camera_registers,
 int size);

Description

Sets the Camera Register Info

Parameters

handle GEV_CAMERA_HANDLE identifying the camera to be accessed.
type Type of the camera.
fSupportedDalsaCamera True if the camera is a supported Teledyne DALSA camera.
*camera_registers Pointer to the camera registers structure to be assigned to the camera

handle,
size Size of the camera registers structure.

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_NULL_PTR

GevWriteRegisterByName
GEV_STATUS GevWriteRegisterByName (GEV_CAMERA_HANDLE handle, char *name,

 int selector, UINT32 size, void *data);

Description

Writes a camera register, identified by name. A helper function using the pattern
GevGetRegisterPtrByName and GevRegisterWrite

Parameters

handle GEV_CAMERA_HANDLE identifying the camera.
name Name to use to search for a GEV_REGISTER structure for the camera.
selector Index into a group of registers providing the same functionality. These register groups

need to be set up properly in the GEV_REGISTER structure.
This is generally 0 as the ‘array’ based functions can be used to access multiple
contiguous locations.

size Size of the data being written.
*data Pointer to the data to be written.

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_RESOURCE_NOT_ENABLED (GEV_REGISTER struct is for a
register that is not available)
GEVLIB_ERROR_NOT_IMPLEMENTED (GEV_REGISTER struct is for a Read-Only
register)
GEVLIB_ERROR_SOFTWARE (GEV_REGISTER struct defines an unsupported
register type)

GigE-V Framework for Linux 32/64-bit Appendix D: Legacy Functions • 101

Appendix D: Legacy Functions
This appendix describes legacy GigE-Vision Framework functions that have been replaced but are still
supported; new applications should not use these functions.

GevAbortImageTransfer
GEV_STATUS GevAbortImageTransfer(GEV_CAMERA_HANDLE handle);

Description

Stops the streaming transfer immediately.

Parameters

handle Handle to the camera

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE (other errors from GevRegisterWriteInt)

Replacement Function

GevAbortTransfer

GevFreeImageTransfer
GEV_STATUS GevFreeImageTransfer(GEV_CAMERA_HANDLE handle);

Description

Frees a streaming transfer to the list of buffers indicated.

Parameters

handle Handle to the camera.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_TIMEOUT (streaming thread did not respond within 5 seconds)

Replacement Function

GevFreeTransfer

102 • Appendix D: Legacy Functions GigE-V Framework for Linux 32/64-bit

GevGetImage
GEV_STATUS GevGetImage (GEV_CAMERA_HANDLE handle,

 GEV_BUFFER_OBJECT **image_object_ptr);

Description

Returns the pointer to the next acquired image object acquired images.
If no images are available in the queue, a NULL pointer is returned.

Parameters

handle Handle to the camera
image_object_ptr Pointer to receive the image object pointer.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_TIME_OUT
GEVLIB_ERROR_NULL_PTR

Replacement Function

None

GevGetImageBuffer
GEV_STATUS GevGetImageBuffer(GEV_CAMERA_HANDLE handle, void **image_buffer_ptr);

Description

Returns the pointer to the most recently acquired image buffer data. If no buffer has been acquired, a
NULL pointer is returned with a timeout condition.

Parameters

handle Handle to the camera
image_buffer_ptr Pointer to receive the image buffer data pointer.

Return Value

GEV_STATUS Possible values are
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_TIME_OUT
GEVLIB_ERROR_NULL_PTR

Replacement Function

None

GigE-V Framework for Linux 32/64-bit Appendix D: Legacy Functions • 103

GevGetImageParameters, GevSetImageParameters
GEV_STATUS GevGetImageParameters (GEV_CAMERA_HANDLE handle, PUINT32 width,

 PUINT32 height, PUINT32 x_offset,
 PUINT32 y_offset, PUINT32 format);

GEV_STATUS GevSetImageParameters (GEV_CAMERA_HANDLE handle, UINT32 width,
 UINT32 height, UINT32 x_offset, UINT32 y_offset,
 UINT32 format);

Description

Gets/sets image parameters from the camera. The current height, width, x/y origin, and image data format can be
manipulated with these functions. (Note : Some cameras allow the format of the image data to be changed whereas
others do not.)

Parameters

width Image width setting (in pixels).
height Image height setting (in lines).
x_offset Image X (pixel) origin (in pixels).
y_offset Image Y (line) origin (in lines).
format Enumerated value for image format. The value depend on the camera model. Possible

values are:
 fmtMono8 0x01080001 8 Bit Monochrome Unsigned
 fmtMono8Signed 0x01080002 8 Bit Monochrome Signed

 fmtMono10 0x01100003 10 Bit Monochrome Unsigned

 fmtMono10Packed 0x010C0004 10 Bit Monochrome Packed

 fmtMono12 0x01100005 12 Bit Monochrome Unsigned

 fmtMono12Packed 0x010C0006 8 Bit Monochrome Packed

 fmtMono14 0x01100025 14 Bit Monochrome Unsigned

 fmtMono16 0x01100007 16 Bit Monochrome Unsigned

 fMtBayerGR8 0x01080008 8-bit Bayer

 fMtBayerRG8 0x01080009 8-bit Bayer

 fMtBayerGB8 0x0108000A 8-bit Bayer

 fMtBayerBG8 0x0108000B 8-bit Bayer

 fMtBayerGR10 0x0110000C 10-bit Bayer

 fMtBayerRG10 0x0110000D 10-bit Bayer

 fMtBayerGB10 0x0110000E 10-bit Bayer

 fMtBayerBG10 0x0110000F 10-bit Bayer

 fMtBayerGR12 0x01100010 12-bit Bayer

 fMtBayerRG12 0x01100011 12-bit Bayer

 fMtBayerGB12 0x01100012 12-bit Bayer

 fMtBayerBG12 0x01100013 12-bit Bayer

 fmtRGB8Packed 0x02180014 8 Bit RGB Unsigned in 24bits

 fmtBGR8Packed 0x02180015 8 Bit BGR Unsigned in 24bits

 fmtRGBA8Packed 0x02200016 8 Bit RGB Unsigned

 fmtBGRA8Packed 0x02200017 8 Bit BGR Unsigned

 fmtRGB10Packed 0x02300018 10 Bit RGB Unsigned

104 • Appendix D: Legacy Functions GigE-V Framework for Linux 32/64-bit

 fmtBGR10Packed 0x02300019 10 Bit BGR Unsigned

 fmtRGB12Packed 0x0230001A 12 Bit RGB Unsigned

 fmtBGR12Packed 0x0230001B 12 Bit BGR Unsigned

 fmtRGB10V1Packed 0x0220001C 10 Bit RGB custom V1 (32bits)

 fmtRGB10V2Packed 0x0220001D 10 Bit RGB custom V2 (32bits)

 fmtYUV411packed 0x020C001E YUV411 (composite color)

 fmtYUV422packed 0x0210001F YUV422 (composite color)

 fmtYUV444packed 0x02180020 YUV444 (composite color)

 fmtRGB8Planar 0x02180021 RGB8 Planar buffers

 fmtRGB10Planar 0x02300022 RGB10 Planar buffers

 fmtRGB12Planar 0x02300023 RGB12 Planar buffers

 fmtRGB16Planar 0x02300024 RGB16 Planar buffers

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID
(GEV_REGISTER struct is not for an Integer register)
GEVLIB_ERROR_ARG_INVALID (GEV_REGISTER definition is invalid)
GEVLIB_ERROR_SOFTWARE
(GEV_REGISTER struct defines an unsupported register type)

Replacement Function

GevGetPayloadParameters

GevGetNextImage
GEV_STATUS GevGetNextImage (GEV_CAMERA_HANDLE handle,

 GEV_BUFFER_OBJECT **image_object_ptr,
 struct timeval *pTimeout);

Description

Waits for the next image object to be acquired and returns its pointer. If no buffer has been acquired
before the timeout period expires, a NULL pointer is returned.

Parameters

handle Handle to the camera
image_object_ptr Pointer to receive the image object pointer.
pTimeout Pointer to a struct timeval (microsecond precision) for the timeout period to wait

for the next frame.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_TIME_OUT
GEVLIB_ERROR_NULL_PTR

Replacement Function

GevGetNextFrame

GigE-V Framework for Linux 32/64-bit Appendix D: Legacy Functions • 105

GevInitializeImageTransfer
GEV_STATUS GevInitializeImageTransfer (GEV_CAMERA_HANDLE handle, UINT32 numBuffers,

 UINT8 **bufAddress);

Description

Initializes a streaming transfer to the list of buffers indicated.
The transfer is set up with the Asynchronous cycling mode.

Parameters

handle Handle to the camera.
numBuffers Number of buffers addresses in array.
bufAddress Array of buffer addresses (already allocated).

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID
(GEV_REGISTER struct is not for an Integer register)
GEVLIB_ERROR_ARG_INVALID
(GEV_REGISTER definition is invalid)
GEVLIB_ERROR_SOFTWARE
(GEV_REGISTER struct defines an unsupported register type)

Note: Errors include attempting to initialize the transfer on a connection that is not set
up for streaming.

Replacement Function

GevInitializeTransfer

106 • Appendix D: Legacy Functions GigE-V Framework for Linux 32/64-bit

GevInitImageTransfer
GEV_STATUS GevInitImageTransfer (GEV_CAMERA_HANDLE handle, GevBufferCyclingMode mode,

 UINT32 numBuffers, UINT8 **bufAddress);

Description

Initializes a streaming transfer to the list of buffers indicated. The buffer cycling mode is also set.

Parameters

handle Handle to the camera.
mode Buffer cycling mode. Can be either :

Asynchronous: All buffers available all the time with no protection between the
application and the acquisition process.
Or
SynchronousNextEmpty; Buffers obtained by the application are available only to
the application until released back to the acquisition process. Buffers are filled in the
order they are released back to the acquisition process. If there are no more buffers
available to the acquisition process, subsequent images are not stored to memory and
are deemed to have been sent to the “trash”.

numBuffers Number of buffers addresses in array.
bufAddress Array of buffer addresses (already allocated).

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID
(GEV_REGISTER struct is not for an Integer register)
GEVLIB_ERROR_ARG_INVALID
(GEV_REGISTER definition is invalid)
GEVLIB_ERROR_SOFTWARE
(GEV_REGISTER struct defines an unsupported register type)
Note: Errors include attempting to initialize the transfer on a connection that is not set
up for streaming.

Replacement Function

GevInitializeTransfer

GigE-V Framework for Linux 32/64-bit Appendix D: Legacy Functions • 107

GevQueryImageTransferStatus
GEV_STATUS GevQueryImageTransferStatus (GEV_CAMERA_HANDLE handle,

 PUINT32 pTotalBuffers, PUINT32 pNumUsed,
 PUINT32 pNumFree, PUINT32 pNumTrashed,
 GevBufferCyclingMode *pMode);

Description

Releases an image object back to the acquisition process for re-use. It is mandatory to call this
function for a transfer using the SynchronousNextEmpty cycle mode in order to avoid running out of
images for the acquisitions process to fill. It is not necessary to call this function for a transfer using
the Asynchronous cycle mode..

Parameters

handle Handle to the camera
pTotalBuffers Pointer to receive the total number of buffers in the transfer list.
pNumUsed Pointer to receive the number of filled buffers ready to be received from the transfer

list.
pNumFree Pointer to receive the number of empty (free) buffers that are available to be filled.
pNumTrashed Pointer to receive the total number of buffers that have been “trashed” so far. (i.e.

Frames that are dropped when there are no more empty buffers to fill but image data
has still been received).

pMode Pointer to receive the current buffer cycling mode (Asynchronous=0,
SynchronousNextEmpty=1).

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID
GEVLIB_ERROR_ARG_INVALID

Replacement Function

GevQueryTransferStatus

108 • Appendix D: Legacy Functions GigE-V Framework for Linux 32/64-bit

GevReleaseImage
GEV_STATUS GevReleaseImage (GEV_CAMERA_HANDLE handle,

 GEV_BUFFER_OBJECT **image_object_ptr);

Description

Releases an image object back to the acquisition process for re-use. It is mandatory to call this
function for a transfer using the SynchronousNextEmpty cycle mode in order to avoid running out of
images for the acquisitions process to fill. It is not necessary to call this function for a transfer using
the Asynchronous cycle mode..

Parameters

handle Handle to the camera
image_object_ptr Pointer to the image object begin released.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID
GEVLIB_ERROR_ARG_INVALID

Replacement Function

GevReleaseFrame

GevReleaseImageBuffer
GEV_STATUS GevReleaseImageBuffer(GEV_CAMERA_HANDLE handle, void **image_buffer_ptr);

Description

Releases an image object back to the acquisition process for re-use. The image object is identified
from the image buffer pointer passed in to the function. It is mandatory to call this function for a
transfer using the SynchronousNextEmpty cycle mode in order to avoid running out of images for the
acquisition process to fill. It is not necessary to call this function for a transfer using the Asynchronous
cycle mode..

Parameters

handle Handle to the camera
image_buffer_ptr Pointer to the image buffer data for the image object being released,.

Return Value

GEV_STATUS Possible values are
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID
GEVLIB_ERROR_ARG_INVALID

Replacement Function

GevReleaseFrameBuffer

GigE-V Framework for Linux 32/64-bit Appendix D: Legacy Functions • 109

GevStartImageTransfer
GEV_STATUS GevStartImageTransfer(GEV_CAMERA_HANDLE handle, UINT32 numFrames);

Description

Starts the streaming transfer.

Parameters

handle Handle to the camera
numFrames Number of frames to be acquired (-1 for continuous).

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEV_STATUS_BUSY (camera is busy reconfiguring – try again later)

Replacement Function

GevStartTransfer

GevStopImageTransfer
GEV_STATUS GevStopImageTransfer(GEV_CAMERA_HANDLE handle);

Description

Stops the streaming transfer.

Parameters

handle Handle to the camera

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE (other errors from GevRegisterWriteInt)

Replacement Function

GevStopTransfer

110 • Appendix D: Legacy Functions GigE-V Framework for Linux 32/64-bit

GevWaitForNextImage
GEV_STATUS GevWaitForNextImage (GEV_CAMERA_HANDLE handle,

 GEV_BUFFER_OBJECT **image_object_ptr, UINT32
 timeout);

Description

Waits for the next image object to be acquired and returns its pointer. If no buffer has been acquired
before the timeout period expires, a NULL pointer is returned.

Parameters

handle Handle to the camera
image_object_ptr Pointer to receive the image object pointer.
timeout Timeout period (in msec) to wait for the next frame.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_TIME_OUT
GEVLIB_ERROR_NULL_PTR

Replacement Function

GevWaitForNextFrame

GevWaitForNextImageBuffer
GEV_STATUS GevWaitForNextImageBuffer (GEV_CAMERA_HANDLE handle,

 void **image_buffer_ptr, UINT32 timeout);

Description

Waits for the next image to be acquired and returns the pointer to the image data. If no buffer has
been acquired before the timeout period expires, a NULL pointer is returned.

Parameters

handle Handle to the camera
image_buffer_ptr Pointer to receive the image buffer data pointer.
timeout Timeout period (in msec) to wait for the next.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_TIME_OUT
GEVLIB_ERROR_NULL_PTR

Replacement Function

None

GigE-V Framework for Linux 32/64-bit Contact Information • 111

Contact Information

The following sections provide sales and technical support contact information.

Sales Information

Visit our web site: www.teledynedalsa.com/corp/contact/
Email: mailto:info@teledynedalsa.com

Technical Support
Submit any support question or request via our web site:

Technical support form via our web page:

Support requests for imaging product
installations

http://www.teledynedalsa.com/imaging/support Support requests for imaging applications

Camera support information

Product literature and driver updates

http://www.teledynedalsa.com/corp/contact/
mailto:info@teledynedalsa.com
http://www.teledynedalsa.com/imaging/support

	GigE-V Framework for Linux Overview
	A Compact API for GigE Vision Cameras under Linux
	Long-Term Support Linux Distributions
	Supported PC and Embedded Hardware Platforms
	System Requirements
	Application Notes

	Getting Started
	Prerequisites
	System Date and Time Considerations

	Installation
	Environment Variables
	Uninstalling

	Performance Tuning
	GigE Network Adapter Overview
	IP Configuration Sequence
	Supported Network Configurations

	GigE Vision Device Status Tool
	lsgev Utility
	Camera IP Address Configuration Tool
	Example usage:
	Setting A Persistent IP Address

	GigE with TurboDrive
	Example Programs
	Image Display
	Saving Images
	Bayer Conversion

	Grab Demos
	File Access Example
	Feature Access Examples
	Archive Data Examples
	save_data_demo
	restore_nano_data_demo

	Action Command Example

	Firmware Update

	GigE-V Framework API
	About GigE Vision
	What’s New for Version 2.10
	API Initialization and Configuration
	Member Function Overview
	Member Function Descriptions
	GevApiGetLibraryConfigOptions, GevApiSetLibraryConfigOptions
	GevApiInitialize
	GevApiUninitialize

	Automatic Camera Discovery
	Member Function Overview
	Member Function Descriptions
	GevDeviceCount
	GevGetCameraList

	Connecting to a Camera
	Member Function Overview
	Member Function Descriptions
	GevCloseCamera
	GevGetCameraInfo
	GevGetCameraInterfaceOptions, GevSetCameraInterfaceOptions
	GevOpenCamera
	GevOpenCameraByAddress
	GevOpenCameraByName
	GevOpenCameraBySN

	Camera GenICam Feature Access
	Member Function Overview
	Member Function Descriptions
	GevGetFeatureNodeMap
	GevGetFeatureValue
	GevGetFeatureValueAsString
	GevSetFeatureValue
	GevSetFeatureValueAsString

	Example C Code : Open camera and access features
	Example C++ Code: Open camera and set up access to the GenICam Feature Node Map for GenApi access.

	Camera GenICam Feature Access – Manual Setup
	Member Function Overview
	Member Function Descriptions
	Gev_RetrieveXMLData
	Gev_RetrieveXMLFile
	GevConnectFeatures
	GevGetGenICamXML_FileName
	GevInitGenICamXMLFeatures
	GevInitGenICamXMLFeatures_FromData
	GevInitGenICamXMLFeatures_FromFile

	GenICam GenApi Feature Access through XML
	Example C++ Code: Simplified Access to GenICam Feature Node Map
	Example C++ Code: Retrieve a Pointer to the GenICam Feature Node Map and Use GenApi Directly
	Example C++ Code: Read XML as Data and Manually Instantiate a GenICam Feature Node Map for the Camera
	Example C++ Code: Use a previously stored XML File and Manually Instantiate a GenICam Feature Node Map for the Camera

	Image Frame Acquisition
	Member Function Overview
	Structure Definition: GEVBUF_HEADER
	Frame Status Values
	Supported Pixel Formats
	Note : Bayer Support
	Note: Packed Color Support

	Member Function Descriptions
	GevAbortTransfer
	GevFreeTransfer
	GevGetNextFrame
	GevGetPayloadParameters
	GevInitializeTransfer
	GevQueryTransferStatus
	GevReleaseFrame
	GevReleaseFrameBuffer
	GevStartTransfer
	GevStopTransfer
	GevWaitForNextFrame

	Asynchronous Camera Event Handling
	Member Function Overview
	Member Function Descriptions
	GEVEVENT_CBFUNCTION
	GevRegisterApplicationEvent
	GevRegisterEventCallback
	GevUnregisterEvent

	Manual Camera Detection and Configuration (Advanced Topic)
	Member Function Overview
	Structure Definition: GEV_NETWORK_INTERFACE
	Structure Definition: GEV_CAMERA_INFO
	Member Function Descriptions
	Gev_Reconnect
	GevEnumerateGevDevices
	GevEnumerateNetworkInterfaces
	GevForceCameraIPAddress
	GevSetCameraList

	Utility Functions
	GevGetBayerAsRGBPixelType
	GevGetConvertedPixelType
	GevGetPixelComponentCount
	GevGetPixelDepthInBits
	GevGetPixelSizeInBytes
	GevGetUnpackedPixelType
	GevIsPixelTypeMono, GevIsPixelTypeRGB, GevIsPixelTypePacked, GevIsPixelTypeBayer
	GevTranslateRawPixelFormat

	Operating System Independence Wrapper
	Function Overview

	Appendix A: Common Package Management methods in Linux
	Software Package Management Tools
	CLI Package Management Command Examples (by Distribution)
	Required Packages

	Appendix B: Helper Functions
	IsGevPixelTypeX11Displayable
	GetX11DisplayablePixelFormat
	CreateDisplayWindow
	DestroyDisplayWindow
	Display_Image
	ConvertGevImageToX11Format
	Read_TIFF_ToGevImage
	Write_GevImage_ToTIFF
	ConvertBayerToRGB

	Appendix C: Feature Access Through Static Registers
	Member Function Overview
	Member Function Descriptions
	GevGetCameraRegisters
	GevGetNumberOfRegisters
	GevGetRegisterByName
	GevGetRegisterByIndex
	GevGetRegisterNameByIndex
	GevGetRegisterPtrByIndex
	GevGetRegisterPtrByName
	GevInitCameraRegisters
	GevReadRegisterByName
	GevRegisterRead
	GevRegisterReadArray
	GevRegisterReadFloat
	GevRegisterReadInt
	GevRegisterWrite
	GevRegisterWriteArray
	GevRegisterWriteFloat
	GevRegisterWriteInt
	GevRegisterWriteNoWait
	GevSetCameraRegInfo
	GevWriteRegisterByName

	Appendix D: Legacy Functions
	GevAbortImageTransfer
	GevFreeImageTransfer
	GevGetImage
	GevGetImageBuffer
	GevGetImageParameters, GevSetImageParameters
	GevGetNextImage
	GevInitializeImageTransfer
	GevInitImageTransfer
	GevQueryImageTransferStatus
	GevReleaseImage
	GevReleaseImageBuffer
	GevStartImageTransfer
	GevStopImageTransfer
	GevWaitForNextImage
	GevWaitForNextImageBuffer

	Contact Information
	Sales Information
	Technical Support

